4,177
Views
46
CrossRef citations to date
0
Altmetric
Research Paper

Design, synthesis, and anticancer evaluation of novel quinoline derivatives of ursolic acid with hydrazide, oxadiazole, and thiadiazole moieties as potent MEK inhibitors

, , , , & ORCID Icon
Pages 955-972 | Received 27 Feb 2019, Accepted 04 Apr 2019, Published online: 09 May 2019

References

  • Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA-Cancer J Clin 2018;68:394–424.
  • Wang SY, Wang LJ, Jiang B, et al. Synthesis and biological evaluation of novel fluorinated anticancer agents incorporating the indolin-2-one moiety. RSC Adv 2015;2015:91795.
  • Lv XH, Ren ZL, Zhou BG, et al. Discovery of N-(benzyloxy)-1,3-diphenyl-1H-pyrazole-4- carboxamide derivatives as potential antiproliferative agents by inhibiting MEK. Bioorg Med Chem 2016;24:4652–9.
  • Sebolt-Leopold JS, Herrera R. Targeting the mitogen-activated protein kinase cascade to treat cancer. Nat Rev Cancer 2004;4:937–47.
  • Villanueva J, Vultur A, Herlyn M. Resistance to BRAF inhibitors: unraveling mechanisms and future treatment options. Cancer Res 2011;71:7137–40.
  • Pearson G, Robinson F, Gibson TB, et al. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 2001;22:153–83.
  • Redwan IN, Dyrager C, Solano C, et al. Towards the development of chromone-based MEK1/2 modulators. Eur J Med Chem 2014;85:127–38.
  • Chen JN, Wang XF, Li T, et al. Design, synthesis, and biological evaluation of novel quinazolinyl-diaryl urea derivatives as potential anticancer agents. Eur J Med Chem 2016;107:12–25.
  • Ribback S, Che L, Pilo MG, et al. Oncogene-dependent addiction to carbohydrate-responsive element binding protein in hepatocellular carcinoma. Cell Cycle 2018;17:1496–512.
  • Ciuffreda L, Incani UC, Steelman LS, et al. Signaling intermediates (MAPK and PI3K) as therapeutic targets in NSCLC. Curr Pharm Des 2014;20:3944–57.
  • Tamura R, Yoshihara K, Saito T, et al. Novel therapeutic strategy for cervical cancer harboring FGFR3-TACC3 fusions. Oncogenesis 2018;7:4.
  • Chen C, Shen H, Zhang LG, et al. Construction and analysis of protein-protein interaction networks based on proteomics data of prostate cancer. Int J Mol Med 2016;37:1576–86.
  • Malissen N, Grob JJ. Metastatic melanoma: recent therapeutic progress and future perspectives. Drugs 2018;78:1197–209.
  • Elsayed HE, Ebrahim HY, Haggag EG, et al. Rationally designed hecogenin thiosemicarbazone analogs as novel MEK inhibitors for the control of breast malignancies. Bioorg Med Chem 2017;25:6297–312.
  • Sanchez JN, Wang T, Cohen MS. BRAF and MEK inhibitors: use and resistance in BRAF-mutated cancers. Drugs 2018;78:549–66.
  • Jaenne PA, Shaw AT, Pereira JR, et al. Selumetinib plus docetaxel for KRAS-mutant advanced non-small-cell lung cancer: a randomised, multicentre, placebo-controlled, phase 2 study. Lancet Oncol 2013;14:38–47.
  • Jänne PA, van den Heuvel MM, Barlesi F, et al. Selumetinib plus docetaxel compared with docetaxel alone and progressionfree survival in patients with KRAS-mutant advanced non-small cell lung cancer: the SELECT-1 randomized clinical trial. JAMA-J Am Med Assoc 2017;317:1844–53.
  • Dummer R, Ascierto PA, Gogas HJ, et al. Overall survival in patients with BRAF-mutant melanoma receiving encorafenib plus binimetinib versus vemurafenib or encorafenib (COLUMBUS): a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol 2018;19:1315–27.
  • Resources for Information on Approved Drugs. Trametinib and Dabrafenib [Internet]. Silver Spring (MD): US Food & Drug Administration (FDA); 2017. Available from: http://www.fda.gov/drugs/informationondrugs/approveddrugs [cited 20 Feb 2019].
  • Sharma SH, Thulasingam S, Nagarajan S. Terpenoids as anti-colon cancer agents – a comprehensive review on its mechanistic perspectives. Eur J Pharmacol 2017;795:169–78.
  • Huang M, Lu JJ, Huang MQ, et al. Terpenoids: natural products for cancer therapy. Expert Opin Investig Drugs 2012;21:1801–18.
  • Hussain H, Green IR, Ali I, et al. Ursolic acid derivatives for pharmaceutical use: a patent review (2012–2016). Expert Opin Ther Pat 2017;27:1061–72.
  • Song GP, Shen XT, Li SM, et al. Structure-activity relationships of 3-O-β-chacotriosyl ursolic acid derivatives as novel H5N1 entry inhibitors. Eur J Med Chem 2015;93:431–42.
  • Yang HM, Yin ZQ, Zhao MG, et al. Pentacyclic triterpenoids from Cyclocarya paliurus and their antioxidant activities in FFA-induced HepG2 steatosis cells. Phytochemistry 2018;151:119–27.
  • Ishikawa T, Donatini RDS, Diaz IEC, et al. Evaluation of gastroprotective activity of Plinia edulis (Vell.) Sobral (Myrtaceae) leaves in rats. J Ethnopharmacol 2008;118:527–9.
  • Ramos-Hryb AB, Pazini FL, Kaster MP, et al. Therapeutic potential of ursolic acid to manage neurodegenerative and psychiatric diseases. CNS Drugs 2017;31:1029–41.
  • Xu HT, Tang HY, Feng HJ, et al. Design, synthesis and anticancer activity evaluation of novel C14 heterocycle substituted epi-triptolide. Eur J Med Chem 2014;73:46–55.
  • Abbas SH, El-Hafeez AAA, Shoman ME, et al. New quinoline/chalcone hybrids as anti-cancer agents: design, synthesis, and evaluations of cytotoxicity and PI3K inhibitory activity. Bioorg Chem 2019;82:360–77.
  • Altıntop MD, Sever B, Çiftçi GA, et al. Design, synthesis, in vitro and in silico evaluation of a new series of oxadiazole-based anticancer agents as potential Akt and FAK inhibitors. Eur J Med Chem 2018;155:905–24.
  • Bajaj S, Roy PP, Singh J. Synthesis, thymidine phosphorylase inhibitory and computational study of novel 1,3,4-oxadiazole-2-thione derivatives as potential anticancer agents. Comput Biol Chem 2018;76:151–60.
  • Hu Y, Li CY, Wang XM, et al. 1,3,4-Thiadiazole: synthesis, reactions, and applications in medicinal, agricultural, and materials chemistry. Chem Rev 2014;114:5572–610.
  • Jakovljević K, Joksović MD, Matić IZ, et al. Novel 1,3,4-thiadiazole-chalcone hybrids containing catechol moiety: synthesis, antioxidant activity, cytotoxicity and DNA interaction studies. Med Chem Commun 2018;9:1679–97.
  • Kamath PR, Sunil D, Joseph MM, et al. Indole-coumarin-thiadiazole hybrids: an appraisal of their IMF-7 cell growth inhibition, apoptotic, antimetastatic and computational Bcl-2 binding potential. Eur J Med Chem 2017;136:442–51.
  • Gu W, Jin XY, Li DD, et al. Design, synthesis and in vitro anticancer activity of novel quinoline and oxadiazole derivatives of ursolic acid. Bioorg Med Chem Lett 2017;27:4128–32.
  • Gnoatto SCB, Dassonville-Klimpt A, Da Nascimento S, et al. Evaluation of ursolic acid isolated from Ilex paraguariensis and derivatives on aromatase inhibition. Eur J Med Chem 2008;43:1865–77.
  • Su CC, Chen JY, Din ZH, et al. 13-acetoxysarcocrassolide induces apoptosis on human gastric carcinoma cells through mitochondria-related apoptotic pathways: p38/JNK activation and PI3K/AKT suppression. Mar Drugs 2014;12:5295–315.
  • Song Y, Xin Z, Wan Y, et al. Synthesis and anticancer activity of some novel indolo[3,2-b]andrographolide derivatives as apoptosis-inducing agents. Eur J Med Chem 2015;90:695–706.
  • Li YC, Gu ZY, Zhang C, et al. Synthesis, characterization and ROS-mediated antitumor effects of palladium(II) complexes of curcuminoids. Eur J Med Chem 2018;144:662–71.
  • Schrödinger Suite 2015-1, Maestro 10.1. [Software]. New York (NY): Schrödinger LLC; 2015. Available from: http://www.schrodinger.com/Products/glide.html
  • Song Z, Chen CP, Liu J, et al. Design, synthesis, and biological evaluation of (2E)-(2-oxo-1,2-dihydro-3H-indol-3-ylidene)acetate derivatives as anti-proliferative agents through ROS-induced cell apoptosis. Eur J Med Chem 2016;124:809–19.
  • Martinou JC, Youle RJ. Mitochondria in apoptosis: Bcl-2 family members and mitochondrial dynamics. Dev Cell 2011;21:92–101.
  • Circu ML, Aw TY. Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med 2010;48:749–62.
  • Rogalska A, Marczak A, Gajek A, et al. Induction of apoptosis in human ovarian cancer cells by new anticancer compounds, epothilone A and B. Toxicol In Vitro 2013;27:239–49.
  • Kalaivani P, Saranya S, Poornima P, et al. Biological evaluation of new nickel (II) metallates: synthesis, DNA/protein binding and mitochondrial mediated apoptosis in human lung cancer cells (A549) via ROS hypergeneration and depletion of cellular antioxidant pool. Eur J Med Chem 2014;82:584–99.
  • Huang XC, Huang RZ, Liao ZX, et al. Synthesis and pharmacological evaluation of dehydroabietic acid thiourea derivatives containing bisphosphonate moiety as an inducer of apoptosis. Eur J Med Chem 2016;108:381–91.
  • Fang ZX, Liao PC, Yang YL, et al. Synthesis and biological evaluation of polyenylpyrrole derivatives as anticancer agents acting through caspases-dependent apoptosis. J Med Chem 2010;53:7967–78.
  • Zhang SS, Nie SP, Huang DF, et al. A novel polysaccharide from Ganoderma atrum exerts antitumor activity by activating mitochondria-mediated apoptotic pathway and boosting the immune system. J Agric Food Chem 2014;62:1581–9.
  • Liu DZ, Tian Z, Yan ZH, et al. Design, synthesis and evaluation of 1,2-benzisothiazol-3-one derivatives as potent caspase-3 inhibitors. Bioorg Med Chem 2013;21:2960–7.
  • Vickers CJ, Gonzalez-Paez GE, Wolan DW. Selective detection and inhibition of active caspase-3 in cells with optimized peptides. J Am Chem Soc 2013;135:12869–76.
  • Boutros T, Chevet E, Metrakos P. Mitogen-activated protein (MAP) kinase/MAP kinase phosphatase regulation: roles in cell growth, death, and cancer. Pharmacol Rev 2008;60:261–310.
  • Davies BR, Logie A, McKay JS, et al. AZD6244 (ARRY-142886), a potent inhibitor of mitogen-activated protein kinase/extracellular signal-regulated kinase 1/2 kinases: mechanism of action in vivo, pharmacokinetic/pharmacodynamic relationship, and potential for combination in preclinical models. Mol Cancer Ther 2007;6:2209–19.
  • Hagemann C, Blank JL. The ups and downs of MEK kinase interactions. Cell Signal 2001;13:863–75.
  • Lorusso PM, Adjei AA, Varterasian M, et al. Phase I and pharmacodynamic study of the oral MEK inhibitor CI-1040 in patients with advanced malignancies. J Clin Oncol 2005;23:5281–93.
  • Iijima M, Kubota Y, Sawa R, et al. A guanine derivative as a new MEK inhibitor produced by Streptomyces sp. MK63-43F2. J Antibiot 2018;71:135–8.
  • Tan N, Wong M, Nannini MA, et al. Bcl-2/Bcl-xL inhibition increases the efficacy of MEK inhibition alone and in combination with PI3 Kinase inhibition in lung and pancreatic tumor models. Mol Cancer Ther 2013;12:853–64.
  • Discovery Studio Visualizer version 18.1.0. [Software]. San Diego (CA): Accelrys Software; 2017. Available from: http://www.3dsbiovia.com/products/collaborative-science/biovia-discovery-studio/visualization-download.php.
  • Dehan E, Bassermann F, Guardavaccaro D, et al. betaTrCP- and Rsk1/2-mediated degradation of BimEL inhibits apoptosis. Mol Cell 2009;33:109–16.
  • Degterev A, Yuan JY. Expansion and evolution of cell death programmes. Nat Rev Mol Cell Biol 2008;9:378–90.