2,106
Views
29
CrossRef citations to date
0
Altmetric
Research Paper

Inhibitory effects of flavonoids isolated from Sophora flavescens on indoleamine 2,3-dioxygenase 1 activity

, ORCID Icon, , , , , , , , , ORCID Icon & ORCID Icon show all
Pages 1481-1488 | Received 20 Nov 2018, Accepted 30 Jun 2019, Published online: 18 Aug 2019

References

  • He X, Fang J, Huang L, et al. Sophora flavescens Ait.: traditional usage, phytochemistry and pharmacology of an important traditional Chinese medicine. J Ethnopharmacol 2015;172:10–29.
  • Sun M, Cao H, Sun L, et al. Antitumor activities of Kushen: literature review. Evid Based Complement Alternat Med 2012;2012:1.
  • Sun M, Han J, Duan J, et al. Novel antitumor activities of Kushen flavonoids in vitro and in vivo. Phytother Res 2007;21:269–77.
  • Balentine DA, Wiseman SA, Bouwens L. The chemistry of tea flavonoids. Crit Rev Food Sci Nutr 1997;37:693–704.
  • Pietta PG. Flavonoids as antioxidants. J Nat Prod 2000;63:1035–42.
  • Procházková D, Boušová I, Wilhelmová N. Antioxidant and prooxidant properties of flavonoids. Fitoterapia 2011;82:513–23.
  • Formica JV, Regelson W. Review of the biology of quercetin and related bioflavonoids. Food Chem Toxicol 1995;33:1061–80.
  • Alcaraz MJ, Hoult J. Actions of flavonoids and the novel anti-inflammatory flavone, hypolaetin-8-glucoside, on prostaglandin biosynthesis and inactivation. Biochem Pharmacol 1985;34:2477–82.
  • Zhang L, Xu L, Xiao S-S, et al. Characterization of flavonoids in the extract of Sophora flavescens Ait. by high-performance liquid chromatography coupled with diode-array detector and electrospray ionization mass spectrometry. J Pharm Biomed Anal 2007;44:1019–28.
  • Canzi EF, Marques FA, Teixeira SD, et al. Prenylated flavonoids from roots of Dahlstedtia glaziovii (Fabaceae). J Braz Chem Soc 2014;25:995–1001.
  • Yang X, Jiang Y, Yang J, et al. Prenylated flavonoids, promising nutraceuticals with impressive biological activities. Trends Food Sci Technol 2015;44:93–104.
  • Slominski A, Semak I, Pisarchik A, et al. Conversion of L-tryptophan to serotonin and melatonin in human melanoma cells. FEBS Lett 2002;511:102–6.
  • Mbongue JC, Nicholas DA, Torrez TW, et al. The role of indoleamine 2, 3-dioxygenase in immune suppression and autoimmunity. Vaccines 2015;3:703–29.
  • Munn DH, Mellor AL. IDO in the tumor microenvironment: inflammation, counter-regulation, and tolerance. Trends Immunol 2016;37:193–207.
  • Lee S, Margolin K. Cytokines in cancer immunotherapy. Cancers (Basel) 2011;3:3856–93.
  • Robinson CM, Hale PT, Carlin JM. The role of IFN-gamma and TNF-alpha-responsive regulatory elements in the synergistic induction of indoleamine dioxygenase. J Interferon Cytokine Res 2005;25:20–30.
  • Mezrich JD, Fechner JH, Zhang X, et al. An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory T cells. J Immunol 2010;185:3190–8.
  • Zhai L, Lauing KL, Chang AL, et al. The role of IDO in brain tumor immunotherapy. J Neurooncol 2015;123:395–403.
  • Kim JH, Cho IS, So YK, et al. Kushenol A and 8-prenylkaempferol, tyrosinase inhibitors, derived from Sophora flavescens. J Enzyme Inhib Med Chem 2018;33:1048–54.
  • Quang TH, Ngan NT, Minh CV, et al. Anti-inflammatory and PPAR transactivational properties of flavonoids from the roots of Sophora flavescens. Phytother Res 2013;27:1300–7.
  • Lee HW, Ryu HW, Kang MG, et al. Potent selective monoamine oxidase B inhibition by maackiain, a pterocarpan from the roots of Sophora flavescens. Bioorg Med Chem Lett 2016;26:4714–9.
  • Jeong TS, Ryu YB, Kim HY, et al. Low density lipoprotein (LDL)-antioxidant flavonoids from roots of Sophora flavescens. Biol Pharm Bull 2008;31:2097–102.
  • Takikawa O, Tagawa Y, Iwakura Y, et al. Interferon-gamma-dependent/independent expression of indoleamine 2,3-dioxygenase. Studies with interferon-gamma-knockout mice. Adv Exp Med Biol 1999;467:553–7.
  • Soderholm JF, Bird SL, Kalab P, et al. Importazole, a small molecule inhibitor of the transport receptor importin-beta. ACS Chem Biol 2011;6:700–8.
  • Nelp MT, Kates PA, Hunt JT, et al. Immune-modulating enzyme indoleamine 2,3-dioxygenase is effectively inhibited by targeting its apo-form. Proc Natl Acad Sci USA 2018;115:3249–54.
  • Diller DJ, Merz KM Jr. High throughput docking for library design and library prioritization. Proteins 2001;43:113–24.
  • Kim JH, Ryu YB, Kang NS, et al. Glycosidase inhibitory flavonoids from Sophora flavescens. Biol Pharm Bull 2006;29:302–5.
  • Opitz CA, Litzenburger UM, Opitz U, et al. The indoleamine-2,3-dioxygenase (IDO) inhibitor 1-methyl-D-tryptophan upregulates IDO1 in human cancer cells. PLoS One 2011;6:e19823.
  • Martinez Molina D, Jafari R, Ignatushchenko M, et al. Monitoring drug target engagement in cells and tissues using the cellular thermal shift assay. Science 2013;341:84–7.
  • Southard JN. Protein analysis using real-time PCR instrumentation: incorporation in an integrated, inquiry-based project. Biochem Mol Biol Educ 2014;42:142–51.
  • Luo S, Xu K, Xiang S, et al. High-resolution structures of inhibitor complexes of human indoleamine 2,3-dioxygenase 1 in a new crystal form. Acta Crystallogr *Section F Struct Biol Commun 2018;74:717–24.