1,202
Views
3
CrossRef citations to date
0
Altmetric
Short Communication

Blocking the FKBP12 induced dendrimeric burst in aberrant aggregation of α-synuclein by using the ElteN378 synthetic inhibitor

, , &
Pages 1711-1715 | Received 03 Jul 2019, Accepted 08 Sep 2019, Published online: 24 Sep 2019

References

  • Avramut M, Achim C. Immunophilins and their ligands: insights into survival and growth of human neurons. Physiol Behav 2002;77:463–8.
  • Shults CW. Lewy bodies. Proc Natl Acad Sci USA 2006;103:1661–8.
  • Gerard M, Deleersnijder A, Daniels V, et al. Inhibition of FK506 binding proteins reduces α-synuclein aggregation and Parkinson’s disease-like pathology. J Neurosci 2010;30:2454–63.
  • Nilsson A, Sköld K, Sjögren B, et al. Increased striatal mRNA and protein levels of the immunophilin FKBP-12 in experimental Parkinson’s disease and identification of FKBP-12-binding proteins. J Proteome Res 2007;6:3952–61.
  • Sugata H, Matsuo K, Nakagawa T, et al. A peptidyl-prolyl isomerase, FKBP12, accumulates in Alzheimer neurofibrillary tangles. Neurosci Lett 2009;459:96–9.
  • Honjo Y, Ayaki T, Horibe T, et al. FKBP12-immunopositive inclusions in patients with α-synucleinopathies. Brain Res 2018;1680:39–45.
  • Deleersnijder A, Van Rompuy AS, Desender L, et al. Comparative analysis of different peptidyl-prolyl isomerases reveals FK506-binding protein 12 as the most potent enhancer of α-synuclein aggregation. J Biol Chem 2011;286:26687–701.
  • Gerard M, Debyser Z, Desender L, et al. FK506 binding protein 12 differentially accelerates fibril formation of wild type alpha-synuclein and its clinical mutants A30P or A53T. J Neurochem 2008;106:121–33.
  • Meuvis J, Gerard M, Desender L, et al. The conformation and the aggregation kinetics of α-synuclein depend on the proline residues in its C-terminal region. Biochemistry 2010;49:9345–52.
  • Haney CM, Petersson EJ. Fluorescence spectroscopy reveals N-terminal order in fibrillar forms of α-synuclein. Chem Commun 2018;54:833–6.
  • Vilar M, Chou HT, Lührs T, et al. The fold of alpha-synuclein fibrils. Proc Natl Acad Sci USA 2008;105:8637–42.
  • Chen M, Margittai M, Chen J, Langen R. Investigation of alpha-synuclein fibril structure by site-directed spin labeling. J Biol Chem 2007;282:24970–9.
  • Cho MK, Kim HY, Fernandez CO, et al. Conserved core of amyloid fibrils of wild type and A30P mutant α-synuclein. Protein Sci 2011;20:387–95.
  • Sweers KKM, van der Werf KO, Bennink ML, Subramaniam V. Atomic force microscopy under controlled conditions reveals structure of C-terminal region of α-synuclein in amyloid fibrils. ACS Nano 2012;6:5952–60.
  • Xu L, Bhattacharya S, Thompson D. Re-designing the α-synuclein tetramer. Chem Commun 2018;54:8080–3.
  • Martina MR, Tenori E, Bizzarri M, et al. The precise chemical-physical nature of the pharmacore in FK506 binding protein inhibition: ElteX, a new class of nanomolar FKB12 ligands. J Med Chem 2013;56:1041–51.
  • Brown JWP, Meisl G, Knowles TPJ, Buell AK, et al. Kinetic barriers to α-synuclein protofilament formation and conversion into mature fibrils. Chem Commun 2018;54:7854–7.
  • Iwai A, Masliah E, Yoshimoto M, et al. The precursor protein of non-Aβ component of Alzheimer’s disease amyloid is a presynaptic protein of the central nervous system. Neuron 1995;14:467–75.
  • Iljina M, Garcia GA, Horrocks MH, et al. Kinetic model of the aggregation of alpha-synuclein provides insights into prion-like spreading. Proc Natl Acad Sci USA 2016;113:E1206–E1215.
  • Lyons W, Steiner JP, Snyder SH, Dawson TM. Neuronal regeneration enhances the expression of the immunophilin FKBP-12. J Neurosci 1995;15:2985–94.
  • Galfré E, Pitt SJ, Venturi E, et al. FKBP12 activates the cardiac ryanodine receptor Ca2+-release channel and is antagonised by FKBP12.6. PLoS One 2012;7:e31956–16.
  • Amdursky N, Erez Y, Huppert D. Molecular rotors: what lies behind the high sensitivity of the Thioflavin-T fluorescent marker. Acc Chem Res 2012;45:1548–57.
  • Biancalana M, Koide S. Molecular mechanism of Thioflavin-T binding to amyloid fibrils. Biochim Biophys Acta 2010;1804:1405–12.
  • Ghosh D, Singh PK, Sahay S, et al. Structure based aggregation studies reveal the presence of helixrich intermediate during α-Synuclein aggregation. Sci Rep 2015;5:9228.
  • Sulatskaya AI, Maskevich AA, Kuznetsova IM, et al. Fluorescence quantum yield of Thioflavin T in rigid isotropic solution and incorporated into the amyloid fibrils. PLoS One 2010;5:e15385–7.
  • Wood J, Wypych J, Steavenson S, et al. α-Synuclein fibrillogenesis is nucleation-dependent: implications for the pathogenesis of Parkinson’s disease. J Biol Chem 1999;274:19509–12.
  • Bharathi P, Nagabhushan P, Rao K. Mathematical approach to understand the kinetics of α-synuclein aggregation: relevance to Parkinson’s disease. Comput Biol Med 2008;38:1084–93.
  • Lindberg DJ, Wranne MS, Gatty MG, et al. Steady state and time-resolved Thioflavin-T fluorescence can report on morphological differences in amyloid fibrils formed by Aβ(1-40) and Aβ(1-42). Biochem Biophys Res Commun 2015;458:418–23.
  • Procacci P. Hybrid MPI/OpenMP implementation of the ORAC molecular dynamics program for generalized ensemble and fast switching alchemical simulations. J Chem Inf Model 2016;56:1117–21.
  • Procacci P. Orac 6. 2017. Available from: http://www.chim.unifi.it/orac. [last accessed 13 Sep 2019].
  • Esteban-Martín S, Silvestre-Ryan J, Bertoncini CW, Salvatella X. Identification of fibril-like tertiary contacts in soluble monomeric α-synuclein. Biophys J 2013;105:1192–8.
  • Hashemi Shabestari M, Kumar P, Segers-Nolten I, et al. Three long-range distance constraints and an approach towards a model for the α-synuclein-fibril fold. Appl Magn Reson 2015;46:369–20.
  • Sweers KKM, Segers-Nolten IMJ, Bennink ML, Subramaniam V. Structural model for alpha-synuclein fibrils derived from high resolution imaging and nanomechanical studies using atomic force microscopy. Soft Matter 2012;8:7215–22.