1,495
Views
15
CrossRef citations to date
0
Altmetric
Short Communication

Discovery of 3-alkyl-5-aryl-1-pyrimidyl-1H-pyrazole derivatives as a novel selective inhibitor scaffold of JNK3

, , , , , & show all
Pages 372-376 | Received 11 Nov 2019, Accepted 05 Dec 2019, Published online: 19 Dec 2019

References

  • Davis RJ. Signal transduction by the JNK Group of MAP kinases. Cell 2000;103:239–52.
  • Mishra P, Günther S. New insights into the structural dynamics of the kinase JNK3. Sci Rep 2018;8:9435.
  • Kyriakis JM, Banerjee P, Nikolakaki E, et al. The stress-activated protein kinase subfamily of c-Jun kinases. Nature 1994;369:156–60.
  • Bogoyevitch MA, Ngoei KR, Zhao TT, et al. c-Jun N-terminal kinase (JNK) signaling: recent advances and challenges. Biochim Biophys Acta 2010;1804:463–75.
  • Haeusgen W, Boehm R, Zhao Y, et al. Specific activities of individual c-Jun N-terminal kinases in the brain. Neuroscience 2009;161:951–9.
  • Weston CR, Davis RJ. The JNK signal transduction pathway. Curr Opin Cell Biol 2007;19:142–9.
  • Gupta S, Barrett T, Whitmarsh AJ, et al. Selective interaction of JNK protein kinase isoforms with transcription factors. Embo J 1996;15:2760–70.
  • Antoniou X, Falconi M, Di Marino D, Borsello T. JNK3 as a therapeutic target for neurodegenerative diseases. J Alzheimer Dis 2011;24:633–42.
  • Dou X, Huang H, Li Y, et al. Multistage screening reveals 3-substituted indolin-2-one derivatives as novel and isoform-selective c-Jun N-terminal Kinase 3 (JNK3) inhibitors: implications to drug discovery for potential treatment of neurodegenerative diseases. J Med Chem 2019;62:6645–64.
  • Koch P, Gehringer M, Laufer SA. Inhibitors of c-Jun N-terminal kinases: an update. J Med Chem 2015;58:72–95.
  • Flemming A. JNK3 as new target in AD? Nat Rev Drug Discov 2012;11:829.
  • Kim M, Lee J, Hah JM, et al. Syntheses and biological evaluation of 1-heteroaryl-2-aryl-1 H -benzimidazole derivatives as c-Jun N-terminal kinase inhibitors with neuroprotective effects. Bioorg Med Chem 2013;21:2271–85.
  • Fong CW. Permeability of the blood–brain barrier: molecular mechanism of transport of drugs and physiologically important compounds. J Membr Biol 2015;248:651–69.
  • Geldenhuys WJ, Mohammad AS, Adkins CE, Lockman PR. Molecular determinants of blood–brain barrier permeation. Ther Deliv 2015;6:961–71.
  • Tian W, Han G, Zhu J, et al. Synthesis and acrosin inhibitory activities of 5-phenyl-1H-pyrazole-3-carboxylic acid amide derivatives. Bioorg Med Chem Lett 2013;23:4177–84.
  • Gosselin F, O’Shea P, Webster R, et al. Highly regioselective synthesis of 1-Aryl-3,4,5-substituted pyrazoles. Synlett 2006;2006:3267–70.
  • Ren SZ, Wang ZC, Zhu XH, et al. Design and biological evaluation of novel hybrids of 1, 5-diarylpyrazole and Chrysin for selective COX-2 inhibition. Bioorg Med Chem 2018;26:4264–75.
  • Odell LR, Abdel-Hamid MK, Hill TA, et al. Pyrimidine-based inhibitors of dynamin I GTPase activity: competitive inhibition at the Pleckstrin Homology domain. J Med Chem 2017;60:349–61.
  • Beaulieu PL, Bousquet Y, Gauthier J, et al. Non-nucleoside benzimidazole-based allosteric inhibitors of the hepatitis C virus NS5B polymerase: inhibition of subgenomic hepatitis C virus RNA replicons in Huh-7 Cells. J Med Chem 2004;47:6884–92.
  • Vivanco I, Palaskas N, Tran C, et al. Identification of the JNK signaling pathway as a functional target of the tumor suppressor PTEN. Cancer Cell 2007;11:555–69.
  • Szczepankiewicz BG, Kosogof C, Nelson LTJ, et al. Aminopyridine-based c-Jun N-terminal kinase inhibitors with cellular activity and minimal cross-kinase activity. J Med Chem 2006;49:3563–80.