2,455
Views
14
CrossRef citations to date
0
Altmetric
Research Paper

Design, synthesis, and antiprotozoal evaluation of new 2,4-bis[(substituted-aminomethyl)phenyl]quinoline, 1,3-bis[(substituted-aminomethyl)phenyl]isoquinoline and 2,4-bis[(substituted-aminomethyl)phenyl]quinazoline derivatives

, , , , , , , , , , , , , , , , , , , , , , , , & show all
Pages 432-459 | Received 04 Oct 2019, Accepted 14 Dec 2019, Published online: 03 Jan 2020

References

  • World Health Organization. World malaria report 2018. Geneva, ‎Switzerland: World Health Organization; 2018.
  • Yeung S, Socheat D, Moorthy VS, et al. Artemisinin resistance on the Thai-Cambodian border. Lancet 2009;374:1418–19.
  • Müller O, Sié A, Meissner P, et al. Artemisinin resistance on the Thai-Cambodian border. Lancet 2009;374:1419.
  • Ariey F, Witkowski B, Amaratunga C, et al. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature 2014;505:50–5.
  • World Health Organization. Artemisinin resistance and artemisinin-based combination therapy efficacy. Geneva, Switzerland: World Health Organization; 2018.
  • World Health Organization. Guidelines for the treatment of malaria. 3rd ed. Geneva, Switzerland: World Health Organization; 2015.
  • De D, Krogstad FM, Cogswell FB, et al. Aminoquinolines that circumvent resistance in Plasmodium falciparum in vitro. Am J Trop Med Hyg 1996;55:579–83.
  • Ridley RG, Hofheinz W, Matile H, et al. 4-aminoquinoline analogs of chloroquine with shortened side chains retain activity against chloroquine-resistant Plasmodium falciparum. Antimicrob Agents Chemother 1996;40:1846–54.
  • Rout S, Mahapatra RK. Plasmodium falciparum: multidrug resistance. Chem Biol Drug Des 2019;93:737–59.
  • Ashley EA, Phyo AP. Drugs in development for malaria. Drugs 2018;78:861–79.
  • Hu YQ, Gao C, Zhang S, et al. Quinoline hybrids and their antiplasmodial and antimalarial activities. Eur J Med Chem 2017;139:22–47.
  • Hussaini SM. Therapeutic significance of quinolines: a patent review. Expert Opin Ther Pat 2016;26:1201–21.
  • Parhizgar AR, Tahghighi A. Introducing new antimalarial analogues of chloroquine and amodiaquine: a narrative review. Iran J Med Sci 2017;42:115–28.
  • Nqoro X, Tobeka N, Aderibigbe BA. Quinoline-based hybrid compounds with antimalarial activity. Molecules 2017;22:2268.
  • Deshpande S, Kuppast B. 4-Aminoquinolines: an overview of antimalarial chemotherapy. Med Chem 2016;06:1–11.
  • Kumar S, Singh RK, Patial B, et al. Recent advances in novel heterocyclic scaffolds for the treatment of drug-resistant malaria. J Enzyme Inhib Med Chem 2016;31:173–86.
  • Manohar S, Tripathi M, Rawat DS. 4-aminoquinoline based molecular hybrids as antimalarials: an overview. Curr Top Med Chem 2014;14:1706–33.
  • O’Neill PM, Ward SA, Berry NG, et al. A medicinal chemistry perspective on 4-aminoquinoline antimalarial drugs. Curr Top Med Chem 2006;6:479–507.
  • Malmquist NA, Moss TA, Mecheri S, et al. Small-molecule histone methyltransferase inhibitors display rapid antimalarial activity against all blood stage forms in Plasmodium falciparum. Proc Natl Acad Sci USA 2012;109:16708–13.
  • Fröhlich T, Tsogoeva SB. In Vivo and in vitro optimization of screening antimalarial hits toward lead molecules for preclinical development. J Med Chem 2016;59:9668–71.
  • Gilson PR, Tan C, Jarman KE, et al. Optimization of 2-anilino 4-amino substituted quinazolines into potent antimalarial agents with oral in vivo activity. J Med Chem 2017;60:1171–88.
  • Baragaña B, Norcross NR, Wilson C, et al. Discovery of a quinoline-4-carboxamide derivative with a novel mechanism of action, multistage antimalarial activity, and potent in vivo efficacy. J Med Chem 2016;59:9672–85.
  • Lubin AS, Rueda-Zubiaurre A, Matthews H, et al. Development of a photo-cross-linkable diaminoquinazoline inhibitor for target identification in Plasmodium falciparum. ACS Infect Dis 2018;13:523–30.
  • Burza S, Croft SL, Boelaert M. Leishmaniasis. Lancet 2018;392:951–70.
  • Alvar J, Canavate C, Gutierrez-Solar B, et al. Leishmania and human immunodeficiency virus coinfection: the first 10 years. Clin Microbiol Rev 1997;10:298–319.
  • World Health Organization. WHO Technical report series n°975, research priorities for chagas disease, human African trypanosomiasis and leishmaniasis. Geneva, Switzerland: World Health Organization; 2012: 116.
  • World Health Organization. WHO interim guidelines for the treatment of gambiense human African trypanosomiasis. Geneva, Switzerland: World Health Organization; 2019.
  • Guillon J, Grellier P, Labaied M, et al. Synthesis, antimalarial activity, and molecular modeling of new pyrrolo[1,2-a]quinoxalines, bispyrrolo[1,2-a]quinoxalines, bispyrido[3,2-e]pyrrolo[1,2-a]pyrazines, and bispyrrolo[1,2-a]thieno[3,2-e]pyrazines. J Med Chem 2004;47:1997–2009.
  • Guillon J, Forfar I, Mamani-Matsuda M, et al. Synthesis, analytical behaviour and biological evaluation of new 4-substituted pyrrolo[1,2-a]quinoxalines as antileishmanial agents. Bioorg Med Chem 2007;15:194–210.
  • Guillon J, Forfar I, Desplat V, et al. Synthesis of new 4-(E)-alkenylpyrrolo[1,2-a]quinoxalines as antileishmanial agents by Suzuki-Miyaura cross-coupling reactions. J Enzyme Inhib Med Chem 2007;22:541–9.
  • Guillon J, Moreau S, Mouray E, et al. New ferrocenic pyrrolo[1,2-a]quinoxaline derivatives: synthesis, and in vitro antimalarial activity. Bioorg Med Chem 2008;16:9133–44.
  • Guillon J, Mouray E, Moreau S, et al. New ferrocenic pyrrolo[1,2-a]quinoxaline derivatives: synthesis, and in vitro antimalarial activity-Part II. Eur J Med Chem 2011;46:2310–26.
  • Ronga L, Del Favero M, Cohen A, et al. Design, synthesis and biological evaluation of novel 4-alkapolyenylpyrrolo[1,2-a]quinoxalines as antileishmanial agents–part III. Eur J Med Chem 2014;81:378–93.
  • Guillon J, Cohen A, Gueddouda NM, et al. Design, synthesis and antimalarial activity of novel bis{N-[(pyrrolo[1,2-a]quinoxalin-4-yl)benzyl]-3-aminopropyl}amine derivatives. J Enzyme Inhib Med Chem 2017;32:547–63.
  • Guillon J, Cohen A, Das RN, et al. Design, synthesis, and antiprotozoal evaluation of new 2,9-bis[(substituted-aminomethyl)phenyl]-1,10-phenanthroline derivatives. Chem Biol Drug Des 2018;91:974–95.
  • Calvo EP, Wasserman M. G-Quadruplex ligands: potent inhibitors of telomerase activity and cell proliferation in Plasmodium falciparum. Mol Biochem Parasitol 2016;207:33–8.
  • Tidwell R, Boykin D, Ismail M, et al. Dicationic compounds which selectively recognize G-quadruplex DNA, Patent EP-1792613-A2, 2007.
  • Leeder WM, Hummel NF, Göringer HU. Multiple G-quartet structures in pre-edited mRNAs suggest evolutionary driving force for RNA editing in trypanosomes. Sci Rep 2016;6:29810.
  • Lombraña R, Álvarez A, Fernández-Justel JM, et al. Transcriptionally driven DNA replication program of the human parasite leishmania major. Cell Rep 2016;16:1774–86.
  • Bottius E, Bakhsis N, Scherf A. Plasmodium falciparum telomerase: de novo telomere addition to telomeric and nontelomeric sequences and role in chromosome healing. Mol Cell Biol 1998;18:919–25.
  • Raj DK, Das BR, Dash AP, et al. Identification of telomerase activity in gametocytes of Plasmodium falciparum. Biochem Biophys Res Commun 2003;309:685–8.
  • De Cian A, Grellier P, Mouray E, et al. Plasmodium telomeric sequences: structure, stability and quadruplex targeting by small compounds. ChemBioChem 2008;9:2730–9.
  • Desjardins RE, Canfield CJ, Haynes JD, et al. Quantitative assessment of antimalarial activity in vitro by a semiautomated microdilution technique. Antimicrob Agents Chemother 1979;16:710–18.
  • Bennett TN, Paguio M, Gligorijevic B, et al. Novel, rapid, and inexpensive cell-based quantification of antimalarial drug efficacy. Antimicrob Agents Chemother 2004;48:1807–10.
  • Bacon DJ, Latour C, Lucas C, et al. Comparison of a SYBR green I-based assay with a histidine-rich protein II enzyme-linked immunosorbent assay for in vitro antimalarial drug efficacy testing and application to clinical isolates. Antimicrob Agents Chemother 2007;51:1172–8.
  • Kaddouri H, Nakache S, Houzé S, et al. Assessment of the drug susceptibility of Plasmodium falciparum clinical isolates from africa by using a Plasmodium lactate dehydrogenase immunodetection assay and an inhibitory maximum effect model for precise measurement of the 50-percent inhibitory concentration. Antimicrob Agents Chemother 2006;50:3343–9.
  • Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983;65:55–63.
  • Emami SA, Zamanai Taghizadeh Rabe S, Ahi A, et al. Inhibitory activity of eleven artemisia species from Iran against Leishmania major parasites. Iran J Basic Med Sci 2012;15:807–11.
  • Räz B, Iten M, Grether-Bühler Y, et al. The Alamar Blue assay to determine drug sensitivity of African trypanosomes (T.b. rhodesiense and T.b. gambiense) in vitro. Acta Trop 1997;68:139–47.
  • Baltz T, Baltz D, Giroud C, et al. Cultivation in a semi-defined medium of animal infective forms of Trypanosoma brucei, T. equiperdum, T. evansi, T. rhodesiense and T. gambiense. EMBO J 1985;4:1273–7.
  • De Cian A, Guittat L, Kaiser M, et al. Fluorescence-based melting assays for studying quadruplex ligands. Methods 2007;42:183–95.
  • Belmonte-Reche E, Martínez-García M, Guédin A, et al. G-quadruplex identification in the genome of protozoan parasites points to naphthalene diimide ligands as new antiparasitic agents. J Med Chem 2018;61:1231–40.
  • Le S, Josse J, Husson F. FactoMineR: an R package for multivariate analysis. J Stat Softw 2008;25:1–18.
  • Zeileis A, Hothorn T. Diagnostic checking in regression relationships. R News 2002;2:7–10.
  • R Core Team. R: a language and environment for statistical computing. R foundation for statistical computing. Vienna, Austria: R Core Team; 2013.
  • Achelle S, Rodrı́guez-López J, Robin-le Guen F. Synthesis and photophysical studies of a series of quinazoline chromophores. J Org Chem 2014;79:7564–71.
  • Jun JV, Petersson EJ, Chenoweth DM. Rational design and facile synthesis of a highly tunable quinoline-based fluorescent small-molecule scaffold for live cell imaging. J Am Chem Soc 2018;140:9486–93.
  • Kang D, Kim H, Shin C. Compound for organic optoelectric device, organic light emitting device containing same, and display device containing said organic light emitting device, Patent EP-2842954, 2015.