5,245
Views
13
CrossRef citations to date
0
Altmetric
Short Communication

C-2 phenyl replacements to obtain potent quinoline-based Staphylococcus aureus NorA inhibitors

, , ORCID Icon, , ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 584-597 | Received 05 Dec 2019, Accepted 12 Jan 2020, Published online: 29 Jan 2020

References

  • WHO. Antimicrobial resistance. Bull World Health Organ 2014; 61:383–94.
  • Ten threats to global health in 2019. Available from: https://www.who.int/emergencies/ten-threats-to-global-health-in-2019 [last accessed 7 Apr 2019].
  • Opperman TJ, Nguyen ST. Recent advances toward a molecular mechanism of efflux pump inhibition. Front Microbiol 2015;6:1–16.
  • Piddock LJV. Understanding the basis of antibiotic resistance: a platform for drug discovery. Microbiology 2014;160:2366–73.
  • Wright GD. Antibiotic adjuvants: rescuing antibiotics from resistance. Trends Microbiol 2016;24:862–71.
  • Brown D. Antibiotic resistance breakers: can repurposed drugs fill the antibiotic discovery void? Nat Rev Drug Discov 2015;14:821–32.
  • Piddock LJV. Multidrug-resistance efflux pumps - not just for resistance. Nat Rev Microbiol 2006; 4:629–36.
  • Ricci V, Tzakas P, Buckley A, et al. Ciprofloxacin-resistant Salmonella enterica serovar typhimurium strains are difficult to select in the absence of AcrB and TolC. Antimicrob Agents Chemother 2006;50:38–42.
  • Zhang Q, Lambert G, Liao D, et al. Acceleration of emergence of bacterial antibiotic resistance in connected microenvironments. Science 2011;333:1764–7.
  • Schillaci D, Spanò V, Parrino B, et al. Pharmaceutical approaches to target antibiotic resistance mechanisms. J Med Chem 2017;60:8268–97.
  • Boucher HW, Talbot GH, Bradley JS, et al. Bad bugs, no drugs: no ESKAPE! an update from the Infectious Diseases Society of America. Clin Infect Dis 2009;48:1–12.
  • Schindler BD, Kaatz GW. Multidrug efflux pumps of Gram-positive bacteria. Drug Resist Updat 2016;27:1–13.
  • Singh S, Kalia NP, Joshi P, et al. Boeravinone B, a novel dual inhibitor of NorA bacterial efflux pump of Staphylococcus aureus and human P-glycoprotein, reduces the biofilm formation and intracellular invasion of bacteria. Front Microbiol 2017;8:1868.
  • Lepri S, Buonerba F, Goracci L, et al. Indole based weapons to fight antibiotic resistance: a structure-activity relationship study. J Med Chem 2016;59:867–91.
  • Schindler BD, Jacinto P, Kaatz GW. Inhibition of drug efflux pumps in Staphylococcus aureus: current status of potentiating existing antibiotics. Future Microbiol 2013;8:491–507.
  • Rath SK, Singh S, Kumar S, et al. Synthesis of amides from (E)-3-(1-chloro-3,4-dihydronaphthalen-2-yl)acrylic acid and substituted amino acid esters as NorA efflux pump inhibitors of Staphylococcus aureus. Bioorg Med Chem 2019;27:343–53.
  • Sabatini S, Gosetto F, Iraci N, et al. Re-evolution of the 2-phenylquinolines: ligand-based design, synthesis, and biological evaluation of a potent new class of Staphylococcus aureus NorA efflux pump inhibitors to combat antimicrobial resistance. J Med Chem 2013;56:4975–89.
  • Astolfi A, Felicetti T, Iraci N, et al. Pharmacophore-based repositioning of approved drugs as novel Staphylococcus aureus NorA efflux pump inhibitors. J Med Chem 2017;60:1598–604.
  • Felicetti T, Cannalire R, Pietrella D, et al. 2-Phenylquinoline S. aureus NorA efflux pump inhibitors: evaluation of the importance of methoxy group introduction. J Med Chem 2018;61:7827–48.
  • Felicetti T, Cannalire R, Nizi MG, et al. Studies on 2-phenylquinoline Staphylococcus aureus NorA efflux pump inhibitors: new insights on the C-6 position. Eur J Med Chem 2018;155:428–33.
  • Cannalire R, Machado D, Felicetti T, et al. Natural isoflavone biochanin A as a template for the design of new and potent 3-phenylquinolone efflux inhibitors against Mycobacterium avium. Eur J Med Chem 2017; 140:321–30.
  • Felicetti T, Machado D, Cannalire R, et al. Modifications on C6 and C7 positions of 3-phenylquinolone efflux pump inhibitors led to potent and safe antimycobacterial treatment adjuvants. ACS Infect Dis 2019; 5:982–1000.
  • Sabatini S, Gosetto F, Manfroni G, et al. Evolution from a natural flavones nucleus to obtain 2-(4-propoxyphenyl)quinoline derivatives as potent inhibitors of the S. aureus NorA efflux pump. J Med Chem 2011; 54:5722–36.
  • Jones CP, Anderson KW, Buchwald SL. Sequential Cu-catalyzed amidation-base-mediated camps cyclization: a two-step synthesis of 2-aryl-4-quinolones from o-halophenones. J Org Chem 2007; 72:7968–73.
  • Chanda T, Chowdhury S, Ramulu BJ, et al. Regioselective quadruple domino aldolization/aldol condensation/Michael/SNAr-cyclization: construction of hexacyclic indeno-fused C-nor-D-homo-steroid frameworks. Tetrahedron 2014; 70:2190–4.
  • Kumar S, Kumar D. Polystyrene-supported iodobenzene diacetate (PSIBD)-mediated synthesis of 1,2-diacylbenzenes from 2-hydroxyaryl aldehyde/ketone acylhydrazones. Synth Commun 2008; 38:3683–99.
  • Santhi J, Baire B. Carbonyl directed regioselective hydration of alkynes under Ag-catalysis. ChemistrySelect 2017; 2:4338–42.
  • CLSI. M07-A10: methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; Approved Standard – Tenth edition. Wayne (PA): Clinical and Laboratory Standards Institute; 2015.
  • Isenberg HD. Clinical microbiology procedures handbook. Washington (DC): ASM; 1992.
  • Kaatz GW, Seo SM, O'Brien L, et al. Evidence for the existence of a multidrug efflux transporter distinct from NorA in Staphylococcus aureus. Antimicrob Agents Chemother 2000; 44:1404–6.
  • Chongsiriwatana NP, Patch JA, Czyzewski AM, et al. Peptoids that mimic the structure, function, and mechanism of helical antimicrobial peptides. Proc Natl Acad Sci USA 2008; 105:2794–9.
  • Schrödinger Release 2016-2: Maestro, version 10.6. New York (NY): Schrödinger, LLC; 2016.
  • Cruciani G, Carosati E, De Boeck B, et al. MetaSite: understanding metabolism in human cytochromes from the perspective of the chemist. J Med Chem 2005; 48:6970–9.
  • See SAR version 5.5-2017. Sankt Augustin (Germany): BioSolveIT GmbH. Available from: www.biosolveit.de.
  • Bietz S, Urbaczek S, Schulz B, et al. Protoss: a holistic approach to predict tautomers and protonation states in protein-ligand complexes. J Cheminform 2014; 6:12.
  • Optibrium. Available from: http://www.optibrium.com/stardrop.
  • Brouwer C, Jenko K, Zoghbi SS, et al. Development of N-methyl-(2-arylquinolin-4-yl)oxypropanamides as leads to PET radioligands for translocator protein (18 kDa). J Med Chem 2014; 57:6240–51.
  • Kaatz GW, Seo SM. Mechanisms of fluoroquinolone resistance in genetically related strains of Staphylococcus aureus. Antimicrob Agents Chemother 1997; 41:2733–7.
  • Rasko DA, Sperandio V. Anti-virulence strategies to combat bacteria-mediated disease. Nat Rev Drug Discov 2010; 9:117–28.
  • Odds FC. Editorial synergy, antagonism, and what the chequerboard puts between them. J Antimicrob Chemother 2003; 52:1.
  • Novo DJ, Perlmutter NG, Hunt RH, et al. Multiparameter flow cytometric analysis of antibiotic effects on membrane potential, membrane permeability, and bacterial counts of Staphylococcus aureus and Micrococcus luteus. Antimicrob Agents Chemother 2000; 44:827–834.
  • Segall MD, Barber C. Addressing toxicity risk when designing and selecting compounds in early drug discovery. Drug Discov Today 2014; 19:688–693.