1,171
Views
5
CrossRef citations to date
0
Altmetric
Research Paper

Aspartic peptidase of Phialophora verrucosa as target of HIV peptidase inhibitors: blockage of its enzymatic activity and interference with fungal growth and macrophage interaction

, , , , , , , & show all
Pages 629-638 | Received 18 Dec 2019, Accepted 28 Jan 2020, Published online: 10 Feb 2020

References

  • Turiansky GW, Benson PM, Sperling LC, et al. Phialophora verrucosa: a new cause of mycetoma. J Am Acad Dermatol 1995;32:311–5.
  • Hochfelder J, Fetto J. Phialophora verrucosa as a cause of deep infection following total knee arthroplasty. Am J Orthop 2013;42:515–8.
  • Tong Z, Chen SC-A, Chen L, et al. Generalized subcutaneous phaeohyphomycosis caused by Phialophora verrucosa: report of a case and review of literature. Mycopathologia 2013;175:301–6.
  • Radouane N, Hali F, Khadir K, et al. Generalized chromomycosis caused by Phialophora verrucosa. Ann Dermatol Venereol 2013;140:197–201.
  • Queiroz-Telles F, de Hoog S, Santos D, et al. Chromoblastomycosis. Clin Microbiol Rev 2017;30:233–76.
  • Li Y, Xiao J, Hoog GS, et al. Biodiversity and human-pathogenicity of Phialophora verrucosa and relatives in Chaetothyriales. Persoonia 2017;38:1–19.
  • Brenes H, Herrera ML, Ávila-Aguero ML. Chromoblastomycosis caused by Phialophora verrucosa in a costa rican child with skin sequelae due to snake bite. Cureus 2018;10:e3574
  • Seyedmousavi S, Netea MG, Mouton JW, et al. Black yeasts and their filamentous relatives: principles of pathogenesis and host defense. Clin Microbiol Rev 2014;27:527–42.
  • Santos ALS, Braga-Silva LA, Silva BA, et al. Aspartic proteolytic inhibitors induce cellular and biochemical alterations in fungal cells. In: Chakraborti, S., Dhalla, N.S., Eds. Proteases in health and disease. New York: Springer; 2013:89–119.
  • Mandujano-González V, Villa-Tanaca L, Anducho-Reyes MA, Mercado-Flores Y. Secreted fungal aspartic proteases: a review. Rev Iberoam Micol 2016;33:76–82.
  • Palmeira VF, Kneipp LF, Alviano CS, Santos ALS. The major chromoblastomycosis fungal pathogen, Fonsecaea pedrosoi, extracellularly releases proteolytic enzymes whose expression is modulated by culture medium composition: implications on the fungal development and cleavage of key’s host structures. FEMS Immunol Microbiol 2006;46:21–9.
  • Palmeira VF, Kneipp LF, Alviano CS, Santos ALS. Secretory aspartyl peptidase activity from mycelia of the human fungal pathogen Fonsecaea pedrosoi: effect of HIV aspartyl proteolytic inhibitors. Res Microbiol 2006;157:819–26.
  • Palmeira VF, Kneipp LF, Rozental S, et al. Beneficial effects of HIV peptidase inhibitors on Fonsecaea pedrosoi: promising compounds to arrest key fungal biological processes and virulence. PLoS One 2008;3:e3382.
  • Palmeira VF, Alviano DS, Braga-Silva LA, et al. HIV aspartic peptidase inhibitors modulate surface molecules and enzyme activities involved with physiopathological events in Fonsecaea pedrosoi. Front Microbiol 2017;8:918.
  • Palmeira VF, Goulart FRV, Granato MQ, et al. Fonsecaea pedrosoi sclerotic cells: secretion of aspartic-type peptidase and susceptibility to peptidase inhibitors. Front Microbiol 2018;9:1383.
  • Granato MQ, Massapust PA, Rozental S, et al. 1,10-phenanthroline inhibits the metallopeptidase secreted by Phialophora verrucosa and modulates its growth, morphology and differentiation. Mycopathologia 2015;179:231–42.
  • Hill A. Optimizing HIV treatment. Curr Opin HIV AIDS 2013;8:34–40.
  • Hunt D, Pockros P. What are the promising new therapies in the field of chronic hepatitis C after the first-generation direct-acting antivirals? Curr Gastroenterol Rep 2013;15:303.
  • Munro CA, Hube B. Anti-fungal therapy at the HAART of viral therapy. Trends Microbiol 2002;10:173–7.
  • Demarchi IG, Cardozo DM, Aristides AMA, et al. Activity of antiretroviral drugs in human infections by opportunistic agents. Braz J Pharm Sci 2012;48:171–85.
  • Monari C, Pericolini E, Bistoni G, et al. Influence of indinavir on virulence and growth of Cryptococcus neoformans. J Infect Dis 2005;19:307–11.
  • Braga-Silva LA, Mogami SSV, Valle RS, et al. Multiple effects of amprenavir against Candida albicans. FEMS Yeast Res 2010;10:221–4.
  • Cordeiro RA, Serpa R, Mendes PBL, et al. The HIV aspartyl protease inhibitor ritonavir impairs planktonic growth, biofilm formation and proteolytic activity in Trichosporon spp. Biofouling 2017;33:640–50.
  • Cassone A, De Bernardis F, Torosantucci A, et al. In vitro and in vivo anticandidal activity of human immunodeficiency virus protease inhibitors. J Infect Dis 1999;180:448–53.
  • Cenci E, Francisci D, Belfiori B, et al. Tipranavir exhibits different effects on opportunistic pathogenic fungi. J Infect 2008;56:58–64.
  • Granato MQ, Gonçalves DS, Seabra SH, et al. 1,10-phenanthroline-5,6-dione-based compounds are effective in disturbing crucial physiological events of Phialophora verrucosa. Front Microbiol 2017;8:76.
  • Blum H, Beier H, Gross HJ. Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis 1987;8:93–9.
  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the folin phenol reagent. J Biol Chem 1951;193:265–75.
  • Santos LO, Vitório BS, Branquinha MH, et al. Nelfinavir is effective in inhibiting the multiplication and aspartic peptidase activity of Leishmania species, including strains obtained from HIV-positive patients. J Antimicrob Chemother 2013;68:348–53.
  • Castilho DG, Chaves AFA, Navarro MV, et al. Secreted aspartyl proteinase (PbSap) contributes to the virulence of Paracoccidioides brasiliensis infection. PLoS Negl Trop Dis 2018;12:e0006806.
  • Hansen MB, Nielsen SE, Berg K. Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. J Immunol Methods 1989;119:203–10.
  • Torres-Guerrero E, Isa-Isa R, Isa M, Arenas R. Chromoblastomycosis. Clin Dermatol 2012;30:403–8.
  • Kneipp LF, Palmeira VF, Pinheiro AA, Alviano CS, et al. Phosphatase activity on the cell wall of Fonsecaea pedrosoi. Med Mycol 2003;41:469–77.
  • Kneipp LF, Rodrigues ML, Holandino C, et al. Ectophosphatase activity in conidial forms of Fonsecaea pedrosoi is modulated by exogenous phosphate and influences fungal adhesion to mammalian cells. Microbiology 2004;150:3355–62.
  • Kneipp LF, Magalhães AS, Abi-Chacra EA, Souza LOP, et al. Surface phosphatase in Rhinocladiella aquaspersa: biochemical properties and its involvement with adhesion. Med Mycol 2012;50:570–8.
  • Santos ALS, Palmeira VF, Rozental S, et al. Biology and pathogenesis of Fonsecaea pedrosoi, the major etiologic agent of chromoblastomycosis. FEMS Microbiol Rev 2007;31:570–91.
  • Clarke SC, Dumesic PA, Homer CM, et al. Integrated activity and genetic profiling of secreted peptidases in Cryptococcus neoformans reveals an aspartyl peptidase required for low pH survival and virulence. PLoS Pathog 2016;12:e1006051.
  • Naglik JR, Challacombe SJ, Hube B. Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. Microbiol Mol Biol Rev 2003;67:400–28.
  • Silva BA, Santos ALS, Barreto-Bergter E, Pinto MR. Extracellular peptidase in the fungal pathogen Pseudallescheria boydii. Curr Microbiol 2006;53:18–22.
  • Monod M. Secreted proteases from dermatophytes. Mycopathologia 2008;166:285–94.
  • Santos ALS. Protease expression by microorganisms and its relevance to crucial physiological/pathological events. World J Biol Chem 2011;2:48–58.
  • Braga-Silva LA, Santos ALS. Aspartic protease inhibitors as potential anti-Candida albicans drugs: impacts on fungal biology, virulence and pathogenesis. Curr Med Chem 2011;18:2401–19.
  • Sidrim JJC, Perdigão-Neto LV, Cordeiro RA, et al. Viral protease inhibitors affect the production of virulence factors in Cryptococcus neoformans. Can J Microbiol 2012;58:932–6.
  • Valle RS, Ramos LS, Reis VJ, et al. Trichosporon asahii secretes a 30-kDa aspartic peptidase. Microbiol Res 2017;205:66–72.
  • Monika S, Małgorzata B, Zbigniew O. Contribution of aspartic proteases in Candida virulence. Protease inhibitors against Candida infections. Curr Protein Pept Sci 2017;18:1050–62.
  • Dostál J, Brynda J, Hrušková-Heidingsfeldová O, et al. The crystal structure of protease Sapp1p from Candida parapsilosis in complex with the HIV protease inhibitor ritonavir. J Enzyme Inhib Med Chem 2012;27:160–5.
  • Santos ALS. HIV aspartyl protease inhibitors as promising compounds against Candida albicans. World J Bio Chem 2010;1:21–30.
  • Abad-Zapatero C, Goldman R, Muchmore SW, et al. Structure of a secreted aspartic protease from Candida albicans complexed with a potent inhibitor: implications for the design of antifungal agents. Protein Sci 2008;5:640–52.
  • Casadevall A, Pirofski LA. Virulence factors and their mechanisms of action: the view from a damage-response framework. J Water Health 2009;7:S2–S18.
  • Rozental S, Alviano CS, Souza W. The in vitro susceptibility of Fonsecaea pedrosoi to activated macrophages. Mycopathologia 1994;126:85–91.
  • Hayakawa M, Ghosn EE, Sousa MGT, et al. Phagocytosis, production of nitric oxide and pro-inflammatory cytokines by macrophages in the presence of dematiaceus fungi that cause chromoblastomycosis. Scand J Immunol 2006;64:382–7.
  • Mastroianni CM, Lichtner M, Mengoni F, et al. Improvement in neutrophil and monocyte function during highly active antiretroviral treatment of HIV-1-infected patients. AIDS 1999;13:883–90.
  • Dionne B. Key principles of antiretroviral pharmacology. Infect Dis Clin North Am 2019;33:787–805.
  • Deng S, Lei W, De Hoog G, et al. Combination of amphotericin B and terbinafine against melanized fungi associated with chromoblastomycosis. Antimicrob Agents Chemother 2018;62:e00270–18.
  • Zhang J, Wu X, Li M, et al. Synergistic effect of terbinafine and amphotericin B in killing Fonsecaea nubica in vitro and in vivo. Rev Inst Med Trop Sao Paulo 2019;61:e31
  • Cuenca-Estrella M. Combinations of antifungal agents in therapy–what value are they? J Antimicrob Chemother 2004;54:854–69.
  • Carrillo-Muñoz AJ, Finquelievich J, Tur-Tur C, et al. Combination antifungal therapy: a strategy for the management of invasive fungal infections. Rev Esp Quimioter 2014;27:141–58.
  • Spitzer M, Robbins N, Wright GD. Combinatorial strategies for combating invasive fungal infections. Virulence 2016;7:1–17.
  • Brilhante RS, Caetano ÉP, Riello GB, et al. Antiretroviral drugs saquinavir and ritonavir reduce inhibitory concentration values of itraconazole against Histoplasma capsulatum strains in vitro. Braz J Infect Dis 2016;20:155–9.
  • Casolari C, Rossi T, Baggio G, et al. Interaction between saquinavir and antimycotic drugs on Candida albicans and Cryptococcus neoformans strains. Pharmacol Res 2004;50:605–10.
  • Vadlapatla RK, Patel M, Paturi DK, et al. Clinically relevant drug-drug interactions between antiretrovirals and antifungals. Expert Opin Drug Metab Toxicol 2014;10:561–80.
  • Cui J, Ren B, Tong Y, et al. Synergistic combinations of antifungals and anti-virulence agents to fight against Candida albicans. Virulence 2015;6:362–71.
  • Agbowuro AA, Huston WM, Gamble AB, Tyndall J. Proteases and protease inhibitors in infectious diseases. Med Res Rev 2018;38:1295–331.
  • Clercq E. Antivirals: past, present and future. Biochem Pharmacol 2013;85:727–44.
  • Miró-Canturri A, Ayerbe-Algaba R, Smani Y. Drug repurposing for the treatment of bacterial and fungal infections. Front Microbiol 2019;28:41.