1,208
Views
9
CrossRef citations to date
0
Altmetric
Research Paper

Bioorganometallic derivatives of 4-hydrazino-benzenesulphonamide as carbonic anhydrase inhibitors: synthesis, characterisation and biological evaluation

, , & ORCID Icon
Pages 622-628 | Received 28 Dec 2019, Accepted 27 Jan 2020, Published online: 10 Feb 2020

References

  • (a) Nocentini A, Supuran CT. Advances in the structural annotation of human carbonic anhydrases and impact on future drug discovery. Expert Opin Drug Discov 2019;14:1175–97. (b) De Simone G, Supuran CT. (In)organic anions as carbonic anhydrase inhibitors. J Inorg Biochem 2012;111:117–29.
  • Supuran CT. Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. Nat Rev Drug Discov 2008;7:168–81.
  • Alterio V, Di Fiore A, D’Ambrosio K, et al. Multiple binding modes of inhibitors to carbonic anhydrases: how to design specific drugs targeting 15 different isoforms? Chem Rev 2012;112:4421–68.
  • Supuran CT. Structure and function of carbonic anhydrases. Biochem J 2016;473:2023–32.
  • Supuran CT. How many carbonic anhydrase inhibition mechanisms exist? J Enzyme Inhib Med Chem 2016;31:345–60.
  • Neri D, Supuran CT. Interfering with pH regulation in tumours as a therapeutic strategy. Nat Rev Drug Discov 2011;10:767–77.
  • Supuran CT. Advances in structure-based drug discovery of carbonic anhydrase inhibitors. Expert Opin Drug Discov 2017;12:61–88.
  • De Simone G, Alterio V, Supuran CT. Exploiting the hydrophobic and hydrophilic binding sites for designing carbonic anhydrase inhibitors. Expert Opin Drug Discov 2013;8:793–810.
  • Supuran CT, Alterio V, Di Fiore A, et al. Inhibition of carbonic anhydrase IX targets primary tumors, metastases, and cancer stem cells: three for the price of one. Med Res Rev 2018;38:1799–836.
  • (a) Berrino E, Supuran CT. Novel approaches for designing drugs that interfere with pH regulation. Expert Opin Drug Discov 2019;14:231–48. (b) Köhler K, HillebrechtA S, Wischeler J, et al. Saccharin inhibits carbonic anhydrases: possible explanation for its unpleasant metallic aftertaste. Angew Chem Int Ed Engl 2007;46:7697–9.
  • Supuran CT. Carbonic anhydrase inhibitors as emerging agents for the treatment and imaging of hypoxic tumors. Expert Opin Investig Drugs 2018;27:963–70.
  • Supuran CT. Carbonic anhydrase inhibitors and their potential in a range of therapeutic areas. Expert Opin Ther Pat 2018;28:709–12.
  • Jensen EL, Clement R, Kosta A, et al. A new widespread subclass of carbonic anhydrase in marine phytoplankton. Isme J 2019;13:2094–106.
  • (a) Carta F, Supuran CT. Diuretics with carbonic anhydrase inhibitory action: a patent and literature review (2005–2013). Expert Opin Ther Pat 2013;23:681–91. (b) Carta F, Supuran CT, Scozzafava A. Novel therapies for glaucoma: a patent review 2007–2011. Expert Opin Ther Pat 2012;22:79–88. (c) Masini E, Carta F, Scozzafava A, Supuran CT. Antiglaucoma carbonic anhydrase inhibitors: a patent review. Expert Opin Ther Pat 2013;23:705–16.
  • Aggarwal M, Kondeti B, McKenna R. Anticonvulsant/antiepileptic carbonic anhydrase inhibitors: a patent review. Expert Opin Ther Pat 2013;23:717–24.
  • (a) Scozzafava A, Supuran CT, Carta F. Antiobesity carbonic anhydrase inhibitors: a literature and patent review. Expert Opin Ther Pat 2013;23:725–35. (b) Supuran CT. Applications of carbonic anhydrases inhibitors in renal and central nervous system diseases. Expert Opin Ther Pat 2018;28:713–21. (c) Supuran CT. Acetazolamide for the treatment of idiopathic intracranial hypertension. Expert Rev Neurother 2015;15:851–6.
  • (a) Supuran CT. Carbonic anhydrases and metabolism. Metabolites 2018;8:25. (b) Supuran CT. Carbonic anhydrase inhibition and the management of hypoxic tumors. Metabolites 2017;7:E48.
  • (a) Carta F, Di Cesare Mannelli L, Pinard M, et al. A class of sulfonamide carbonic anhydrase inhibitors with neuropathic pain modulating effects. Bioorg Med Chem 2015;23:1828–40. (b) Supuran CT. Carbonic anhydrase inhibition and the management of neuropathic pain. Expert Rev Neurother 2016;16:961–8.
  • Di Cesare Mannelli L, Micheli L, Carta F, et al. Carbonic anhydrase inhibition for the management of cerebral ischemia: in vivo evaluation of sulfonamide and coumarin inhibitors. Enzyme Inhib Med Chem 2016;31:894–9.
  • (a) Margheri F, Ceruso M, Carta F, et al. Overexpression of the transmembrane carbonic anhydrase isoforms IX and XII in the inflamed synovium. J Enzyme Inhib Med Chem 2016;31:60–3. (b) Bua S, Di Cesare Mannelli L, Vullo D, et al. Design and synthesis of novel nonsteroidal anti-inflammatory drugs and carbonic anhydrase inhibitors hybrids (NSAIDs-CAIs) for the treatment of rheumatoid arthritis. J Med Chem 2017;60:1159–70. (c) Akgul O, Di Cesare Mannelli L, Vullo D, et al. Discovery of novel nonsteroidal anti-inflammatory drugs and carbonic anhydrase inhibitors hybrids (NSAIDs-CAIs) for the management of rheumatoid arthritis. J Med Chem 2018;61:4961–77.
  • Heldt JM, Fischer-Durand N, Salmain M, et al. Preparation and characterization of poly(amidoamine) dendrimers functionalized with a rhenium carbonyl complex and PEG as new IR probes for carbonyl metallo immunoassay. J Organomet Chem 2004;689:4775–82.
  • Herrmann WA. Synthetic methods of organometallic and inorganic chemistry. Stuttgart: Thieme Medical Pub; 1997.
  • Hromadová M, Salmain M, Sokolová R, et al. Novel redox label for proteins: electron transfer properties of (ƞ5-cyclopentadienyl)tricarbonyl manganese bound to bovine serum albumin. J Organomet Chem 2003;668:17–24.
  • Winum JY, Dogné JM, Casini A, et al. Carbonic anhydrase inhibitors: synthesis and inhibition of cytosolic/membrane associated carbonic anhydrase isozymes i, ii, and ix with sulphonamides incorporating hydrazino moieties. J Med Chem 2005;48:2121–5.
  • Khalifah RG. The carbon dioxide hydration activity of carbonic anhydrase. I. Stop-flow kinetic studies on the native human isoenzymes B and C. J Biol Chem 1971;246:2561–73.
  • (a) Vermelho AB, da Silva Cardoso V, Ricci Junior E, et al. Nanoemulsions of sulfonamide carbonic anhydrase inhibitors strongly inhibit the growth of Trypanosoma cruzi. J Enzyme Inhib Med Chem 2018;33:139–46. (b) Nocentini A, Carta F, Tanc M, et al. Deciphering the mechanism of human carbonic anhydrases inhibition with sulfocoumarins: computational and experimental studies. Chemistry 2018;24:7840–4. (c) Awadallah FM, Bua S, Mahmoud WR, et al. Inhibition studies on a panel of human carbonic anhydrases with N1-substituted secondary sulfonamides incorporating thiazolinone or imidazolone-indole tails. J Enzyme Inhib Med Chem 2018;33:629–38.
  • (a) Bua S, Bozdag M, Del Prete S, et al. Mono- and di-thiocarbamate inhibition studies of the δ-carbonic anhydrase TweCAδ from the marine diatom Thalassiosira weissflogii. J Enzyme Inhib Med Chem 2018;33:707–13. (b) Ferraroni M, Gaspari R, Scozzafava A, et al. Dioxygen, an unexpected carbonic anhydrase ligand. J Enzyme Inhib Med Chem 2018;33:999–1005. (c) El-Gazzar MG, Nafie NH, Nocentini A, et al. Carbonic anhydrase inhibition with a series of novel benzenesulfonamide-triazole conjugates. J Enzyme Inhib Med Chem 2018;33:1565–74. (d) Akocak S, Lolak N, Bua S, Supuran CT. Discovery of novel 1,3-diaryltriazene sulfonamides as carbonic anhydrase I, II, VII, and IX inhibitors. J Enzyme Inhib Med Chem 2018;33:1575–80.
  • (a) Nocentini A, Bonardi A, Gratteri P, et al. Steroids interfere with human carbonic anhydrase activity by using alternative binding mechanisms. J Enzyme Inhib Med Chem 2018;33:1453–9. (b) Nocentini A, Trallori E, Singh S, et al. 4-Hydroxy-3-nitro-5-ureido-benzenesulfonamides selectively target the tumor-associated carbonic anhydrase isoforms IX and XII showing hypoxia-enhanced antiproliferative profiles. J Med Chem 2018;61:10860–74. (c) Chohan ZH, Munawar A, Supuran CT. Transition metal ion complexes of Schiff bases. Synthesis, characterization and antibacterial properties. Met Based Drugs 2001;8:137–43. (d) OztürkSarikaya SB, Topal F, Sentürk M, et al. In vitro inhibition of α-carbonic anhydrase isozymes by some phenolic compounds. Bioorg Med Chem Lett 2011;21:4259–62.
  • (a) Awadallah FM, Bua S, Mahmoud WR, et al. Inhibition studies on a panel of human carbonic anhydrases with N1-substituted secondary sulfonamides incorporating thiazolinone or imidazolone-indole tails. J Enzyme Inhib Med Chem 2018;33:629–38. (b) Supuran CT, Clare BW. Carbonic anhydrase inhibitors. Part 57. Quantum chemical QSAR of a group of 1,3,4-thiadiazole and 1,3,4-thiadiazoline disulfonamides with carbonic anhydrase inhibitory properties. Eur J Med Chem 1999;34:41–50. (c) Sentürk M, Gülçin I, Daştan A, et al. Carbonic anhydrase inhibitors. Inhibition of human erythrocyte isozymes I and II with a series of antioxidant phenols. Bioorg Med Chem 2009;17:3207–11.
  • Demurtasa M, Baldisserotto A, Lampronti I, et al. Indole derivatives as multifunctional drugs: synthesis and evaluation of antioxidant, photoprotective and antiproliferative activity of indole hydrazones. Bioorg Chem 2019;85:568–76.
  • Soares Coimbra E, Nora de SM, Sequetto Terrora M, et al. Synthesis, biological activity, and mechanism of action of new 2-pyrimidinyl hydrazone and N-acylhydrazone derivatives, a potent and new classes of antileishmanial agents. Eur J Med Chem 2019;184:111742.
  • Manzur C, Baeza E, Millan L, et al. Organometallic iron (II) hydrazines and hydrazones – syntheses, characterisations and the X-ray crystal structures of [Fe(η5-Cp)(η6-C6H5NHNH2)]+PF6− and [Fe(η5-Cp)(η6-p-MeC6H4NHNCMe2)]+PF6. J Organomet Chem 2000;608:126–32.
  • Trujillo A, Fuentealba M, Manzur C, et al. Synthesis and properties of new dinuclearorganoiron(II) hydrazones combining the potent electron-donating [(η5-C5H4)FeCp] fragment with [CpFe(η6-arene)]+-type acceptors. J Organomet Chem 2003;681:150–7.
  • Huentupil Y, Peña L, Novoa N, et al. New sulfonamides containing organometallic-acylhydrazones: synthesis, characterisation and biological evaluation as inhibitors of human carbonic anhydrases. J Enzyme Inhib Med Chem 2019;34:451–8.
  • Toro P, Acuña A, Mallea M, et al. Condensation and substitution products obtained in reactions of isomeric bromo-nitrofuraldehydes with ferrocenylamine: electrochemistry and anti-parasitic evaluation. J Organomet Chem 2019;901:120946.
  • Gómez J, Sierra D, Fuentealba M, et al. Homo- and heterobimetallicazines derived from ferrocene and cyrhetrene: synthesis, structural characterization and electrochemical studies. J Organomet Chem 2019;883:65–70.
  • Mishra S, Tirkey V, Ghosh A, et al. Ferrocenyl–cymantrenyl hetero-bimetallic chalcones: synthesis, structure and biological properties. J Mol Struct 2015;1085:162–72.
  • Barton D, Ollis WD, eds. Comprehensive organic chemistry. Oxford (UK): Pergamon; 1979.
  • Mandewale M, Patil U, Shedge S, et al. A review on quinoline hydrazone derivatives as a new class of potent antitubercular and anticancer agents. Beni-Suef Univ J Basic Appl Sci 2017;6:354–61.
  • Fuentealba M, Toupet L, Manzur C, et al. Pentamethylcyclopentadienylorganoiron(II) hydrazone complexes: synthesis, spectroscopic characterization, and second-order nonlinear optical properties. X-ray crystal structure of[(η5-C5Me5)Fe[(η6-C6H5)NHNH2]+ PF6. J Organomet Chem 2007;692:1099–109.
  • Gómez J, Leiva N, Arancibia R, et al. Synthesis, characterization, crystal structures and computational studies on novel cyrhetrenylhydrazones. J Organomet Chem 2016;819:129–37.
  • Krasavin M, Kalinin S, Zozulya S, et al. Screening of benzenesulfonamide in combination with chemically diversefragments against carbonic anhydrase by differential scanning fluorimetry. J Enzyme Inhib Med Chem 2020;35:306–10.
  • Bilginer S, Gonder B, Gul HI, et al. Novel sulphonamides incorporating triazene moieties show powerful carbonic anhydrase I and II inhibitory properties. J Enzyme Inhib Med Chem 2020;34:325–9.
  • Glans L, Hu W, Jöst C, et al. Synthesis and biological activity of cymantrene and cyrhetrene 4-aminoquinoline conjugates against malaria, leishmaniasis, and trypanosomiasis. Dalton Trans 2012;41:6443–50.
  • Muñoz-Osses M, Godoy F, Fierro A, et al. New organometallicimines of rhenium (i) as potential ligands of GSK-3b: synthesis, characterization and biological studies. Dalton Trans 2018;47:1233–42.
  • Dewangan S, Barik T, Parida R, et al. Solvent free synthesis of ferrocene based rhodamine – hydrazone molecular probe with improved bioaccumulation for sensing and imaging applications. J Organomet Chem 2019;904:120999.
  • Almendras I, Huentupil Y, Novoa N, et al. Trinuclear Ni(II), Pd(II) and Cu(II) complexes containing the 2-hydroxy-benzaldehyde-ferrocenyl-sulfonylhydrazone ligand: synthesis, structural characterization and antiplasmodial evaluation. Inorg Chim Acta 2019;496:119050.
  • Förster C, Veit P, Ksenofontov V, Heinze K. Diferrocenyltosylhydrazone with an ultrastrong NH⋯Fe hydrogen bond as double click switch. Chem Commun 2015;51:1514–6.
  • Quintana C, Silva G, Klahn A, et al. New cyrhetrenyl and ferrocenyl sulfonamides: synthesis, characterization, X-ray crystallography, theoretical study and anti-Mycobacterium tuberculosis activity. Polyhedron 2017;134:166–72.
  • Quintana C, Klahn AH, Artigas V, et al. Cyrhetrenyl and ferrocenyl1,3,4-thiadiazole derivatives: synthesis, characterization, crystal structures and in vitro antitubercular activity. Inorg Chem Commun 2015;55:48–50.
  • Arancibia R, Klahn A, Lapier M, et al. Synthesis, characterization and in vitro anti-Trypanosoma cruzi and anti-Mycobacterium tuberculosis evaluations of cyrhetrenyl and ferrocenyl thiosemicarbazones. J Organomet Chem 2014;755:1–6.
  • Aslan H, Karacan N, Aslan E. Synthesis, characterization and antimicrobial activity of a new aromatic sulfonyl hydrazone derivative and its transition metal complexes. J Chin Chem Soc 2013;60:212–7.
  • Veit P, Prantl E, Förster C, Heinze K. Competitive NH···Ru/Fe hydrogen bonding in ferrocenyl ruthenocenyl tosyl hydrazone. Organometallics 2016;35:249–57.
  • Arancibia R, Klahn AH, Buono-Core GE, et al. Synthesis, characterization and anti-Trypanosoma cruzi evaluation of ferrocenyl and cyrhetrenyl imines derived from 5-nitrofurane. J Organomet Chem 2011;696:3238–44.
  • Concha C, Quintana C, Klahn AH, et al. Organometallic to sylhydrazones: synthesis, characterization, crystal structures and in vitro evaluation for anti-Mycobacterium tuberculosis and antiproliferative activities. Polyhedron 2017;131:40–5.