5,959
Views
10
CrossRef citations to date
0
Altmetric
Review Article

An overview on natural farnesyltransferase inhibitors for efficient cancer therapy

, , , &
Pages 1027-1044 | Received 15 Aug 2019, Accepted 09 Feb 2020, Published online: 20 Apr 2020

References

  • Wittekind C, Neid M. Cancer invasion and metastasis. Oncology 2005;69:14–6.
  • Rodenhuis S. Ras and human tumors. Semin Cancer Biol 1992;3:241–7.
  • Cadelis MM, Bourguet-Kondracki ML, Dubois J, et al. Discovery and preliminary structure–activity relationship studies on tecomaquinone I and tectol as novel farnesyltransferase and plasmodial inhibitors. Bioorg Med Chem 2016;24:3102–7.
  • Wang J, Bourguet-Kondracki ML, Longeon A, et al. Chemical and biological explorations of the electrophilic reactivity of the bioactive marine natural product halenaquinone with biomimetic nucleophiles. Bioorg Med Chem Lett 2011;21:1261–4.
  • Cao S, Foster C, Brisson M, et al. Halenaquinone and xestoquinone derivatives, inhibitors of Cdc25B phosphatase from a Xestospongia sp. Bioorg Med Chem 2005;13:999–1003.
  • Ho C-L, Wang J-L, Lee C-C, et al. Antroquinonol blocks Ras and Rho signaling via the inhibition of protein isoprenyltransferase activity in cancer cells. Biomed Pharmacother 2014;68:1007–14.
  • Hara M, Soga S, Itoh M, et al. UCF116, new inhibitors of farnesyltransferase produced by Streptomyces. J Antibiot 2000;53:720–3.
  • Long C, Marcourt L, Raux R, et al. Meroterpenes from Dichrostachys cinerea inhibit protein farnesyl transferase activity. J Nat Prod 2009;72:1804–15.
  • Yu C, Han W, Shi T, et al. PTPIP51, a novel 14-3-3 binding protein, regulates cell morphology and motility via Raf-ERK pathway. Cell Signal 2008;20:2208–20.
  • Harper JL, Khalil IM, Shaw L, et al. Structure–activity relationships of the bioactive thiazinoquinone marine natural products thiaplidiaquinones A and B. Mar Drugs 2015;13:5102–10.
  • Cadelis MM, Bourguet-Kondracki ML, Dubois J, et al. Structure–activity relationship studies on thiaplidiaquinones A and B as novel inhibitors of Plasmodium falciparum and farnesyltransferase. Bioorg Med Chem 2017;25:4433–43.
  • Omura S, Inokoshi J, Uchida R, et al. Andrastins A–C, new protein farnesyltransferase inhibitors produced by Penicillium sp. FO-3929. I. Producing strain, fermentation, isolation, and biological activities. J Antibiot (Tokyo). 1996;49:414–7.
  • Singh SB, Zink DL, Williams M, et al. Kampanols: novel ras farnesyl-protein transferase inhibitors from Stachybotrys kampalensis. Bioorg Med Chem Lett 1998;8:2071–6.
  • Gelb MH, Tamanoi F, Yokoyama K, et al. The inhibition of protein prenyltransferases by oxygenated metabolites of limonene and perillyl alcohol. Cancer Lett 1995;91:169–75.
  • Hardcastle I, Rowlands M, Moreno Barber A, et al. Inhibition of protein prenylation by metabolites of limonene. Biochem Pharmacol 1999;57:801–9.
  • Chakrabarti D, Da Silva T, Barger J, et al. Protein farnesyltransferase and protein prenylation in Plasmodium falciparum. J Biol Chem 2002;277:42066–73.
  • Wiesner J, Kettler K, Sakowski J, et al. Farnesyltransferase inhibitors inhibit the growth of malaria parasites in vitro and in vivo. Angew Chem (Int Ed. in English) 2004;43:251–4.
  • Tamanoi F. Inhibitors of ras farnesyltransferases. Trends Biochem Sci 1993;18:349–53.
  • Bhide RS, Patel DV, Patel MM, et al. Rational design of potent carboxylic acid based bisubstrate inhibitors of ras farnesyl protein transferase. Bioorg Med Chem Lett 1994;4:2107–12.
  • Kim YS, Kim JS, Park SH, et al. Two cytotoxic sesquiterpene lactones from the leaves of Xanthium strumarium and their in vitro inhibitory activity on farnesyltransferase. Planta Med 2003;69:375–7.
  • Moorthy NSH, Sousa SJ, Ramos MA, Fernandes P. Farnesyltransferase inhibitors: a comprehensive review based on quantitative structural analysis. Curr Med Chem. 2013;20:4888–923.
  • Lee SH, Kim MJ, Bok SH, et al. Arteminolide, an inhibitor of farnesyl transferase from Artemisia sylvatica. J Org Chem 1998;63:7111–3.
  • Lee S-H, Kang H-M, Song H-C, et al. Sesquiterpene lactones, inhibitors of farnesyl protein transferase, isolated from the flower of Artemisia sylvatica. Tetrahedron 2000;56:4711–5.
  • Lee SH, Kim HK, Seo JM, et al. Arteminolides B, C, and D, new inhibitors of farnesyl protein transferase from Artemisia argyi. J Org Chem 2002;67:7670–5.
  • Gibbs JB, Pompliano DL, Mosser SD, et al. Selective inhibition of farnesyl-protein transferase blocks ras processing in vivo. J Biol Chem 1993;268:7617–20.
  • Singh SB, Jayasuriya H, Silverman KC, et al. Efficient syntheses, human and yeast farnesyl-protein transferase inhibitory activities of chaetomellic acids and analogues. Bioorg Med Chem 2000;8:571–80.
  • Dufresne C, Wilson K, Singh S, et al. Zaragozic acids D and D 2: potent inhibitors of squalene synthase and of Ras farnesyl-protein transferase. J Nat Prod 1993;56:1923–9.
  • Tanimoto T, Ohya S, Tsujita Y. Inhibitory activity to protein prenylation and antifungal activity of zaragozic acid D3, a potent inhibitor of squalene synthase produced by the fungus, Mollisia sp. SANK 10294. J Antibiot (Tokyo). 1998;51:428–31.
  • Singh SB, Liesch JM, Lingham RB, et al. Actinoplanic acid A: a macrocyclic polycarboxylic acid which is a potent inhibitor of Ras farnesyl-protein transferase. J Am Chem Soc 1994;116:11606–7.
  • Singh SM, Liesch JB, Lingham R, et al. Structure, chemistry, and biology of actinoplanic acids: potent inhibitors of ras farnesyl-protein transferase. J Org Chem 1995;62:7896–910.
  • Hansen OK, Changtragoon S, Ponoy B, et al. Genetic resources of teak (Tectona grandis Linn. f.)—strong genetic structure among natural populations. Tree Genet Genomes 2014;11:802–18.
  • Vyas P, Yadav DK, Khandelwal P. Tectona grandis (teak) – a review on its phytochemical and therapeutic potential. Nat Prod Res 2019;33:2338–54.
  • Senthilkumar N, Nandhakumar E, Priya P, et al. Synthesis of ZnO nanoparticles using leaf extract of Tectona grandis (L.) and their anti-bacterial, anti-arthritic, anti-oxidant and in vitro cytotoxicity activities. New J Chem 2017;41:10347–56.
  • Hinterding K, Hagenbuch P, Rétey J, Waldmann H. Synthesis and in vitro evaluation of the Ras farnesyltransferase inhibitor pepticinnamin E. Angew Chem Int Ed 1998;37:1236–9.
  • Thutewohl M, Waldmann H. Solid-phase synthesis of a pepticinnamin E Library. Bioorg Med Chem 2003;11:2591–615.
  • Singh S. Fusidienol: a novel inhibitor of Ras farnesyl-protein transferase from Fusidium griseum. Tetrahedron Lett 1994;35:4693–6.
  • Singh SB, Ball RG, Zink DL, et al. Fusidienol A: a novel Ras farnesyl-protein transferase inhibitor from Phoma sp. J Org Chem 1997;62:7485–8.
  • Jayasuriya H, Ball RG, Zink DL, et al. Barceloneic acid A, a new farnesyl-protein transferase inhibitor from a Phoma species. J Nat Prod 1995;58:986–91.
  • Singh SB, Zink DL, Liesch JM, et al. Preussomerins and deoxypreussomerins: novel inhibitors of Ras farnesyl-protein transferase. J Org Chem 1994;59:6296–302.
  • Van der Pyl D, Inokoshi J, Shiomi K, et al. Inhibition of farnesyl-protein transferase by gliotoxin and acetylgliotoxin. J Antibiot 1992;45:1802–5.
  • Singh SB, Zink DL, Bills GF, et al. Cylindrol A: a novel inhibitor of Ras farnesyl-protein transferase from Cylindrocarpon lucidum. Tetrahedron Lett 1995;36:4935–8.
  • Uchida R, Shiomi K, Inokoshi J, et al. ChemInform abstract: kurasoins A and B, new protein farnesyltransferase inhibitors produced by Paecilomyces sp. FO-3684. Part 1. Producing strain, fermentation, isolation, and biological activities. ChemInform 1997;28:932–34.
  • Romanis R. LXXXVIII—certain products from teak. Preliminary notice. J Chem Soc Trans 1887;51:868–71.
  • Sandermann W, Dietrichs H-H. Chemische Untersuchungen an Teakholz. Holzforschung 1959;13:137–48.
  • Liang Y-Q, Liao X-J, Lin J-L, et al. Spongiains A–C: three new spongian diterpenes with ring A rearrangement from the marine sponge Spongia sp. Tetrahedron 2019;75:3802–8.
  • Schmitz FJ, Bloor SJ. Xesto- and halenaquinone derivatives from a sponge, Adocia sp., from Truk lagoon. J Org Chem 1988;53:3922–5.
  • Desoubzdanne D, Marcourt L, Raux R, et al. Alisiaquinones and alisiaquinol, dual inhibitors of Plasmodium falciparum enzyme targets from a new caledonian deep water sponge. J Nat Prod 2008;71:1189–92.
  • He F, Mai HL, Longeon A, et al. Novel adociaquinone derivatives from the Indonesian sponge Xestospongia sp. Marine Drugs 2015;13:2617–28.
  • Takeda R, Chen M, Chen P-N, et al. Effects of Antrodia camphorata mycelia extract containing antroquinonol on lowering low-density lipoprotein cholesterol: a randomized double-blind study. J Pharm Nutr Sci 2017;7:73–80.
  • Shi Y, Yang S, Lee DY, Lee C. Increasing anti-Aβ-induced neurotoxicity ability of Antrodia camphorata-fermented product with deep ocean water supplementary. J Sci Food Agric 2016;96:4690–701.
  • Yen IC, Yao C-W, Kuo M-T, et al. Anti-cancer agents derived from solid-state fermented Antrodia camphorata mycelium. Fitoterapia 2015;102:115–9.
  • Wu S-H, Ryvarden L, Chang T-T. Antrodia camphorata (“niu-chang-chih”), new combination of a medicinal fungus in Taiwan. Bot Bull Acad Sin (Taipei). 1996;38:273–5.
  • Tsai P-Y, Ka S-M, Chao T-K, et al. Antroquinonol reduces oxidative stress by enhancing the Nrf2 signaling pathway and inhibits inflammation and sclerosis in focal segmental glomerulosclerosis mice. Free Radic Biol Med 2011;50:1503–16.
  • Kumar KJS, Chu F-H, Hsieh H-W, et al. Antroquinonol from ethanolic extract of mycelium of Antrodia cinnamomea protects hepatic cells from ethanol-induced oxidative stress through Nrf-2 activation. J Ethnopharmacol 2011;136:168–77.
  • Angamuthu V, Shanmugavadivu M, Nagarajan G, Velmurugan BK. Pharmacological activities of antroquinonol – mini review. Chem-Biol Interact 2019;297:8–15.
  • Lee W-T, Lee T-H, Cheng C-H, et al. Antroquinonol from Antrodia camphorata suppresses breast tumor migration/invasion through inhibiting ERK-AP-1- and AKT-NF-κB-dependent MMP-9 and epithelial–mesenchymal transition expressions. Food Chem Toxicol 2015;78:33–41.
  • Saravana Kumar P, Duraipandiyan V, Ignacimuthu S. Isolation, screening and partial purification of antimicrobial antibiotics from soil Streptomyces sp. SCA 7. Kaohsiung J Med Sci 2014;30:435–46.
  • Karthik L, Kumar G, Kirthi AV, et al. Streptomyces sp. LK3 mediated synthesis of silver nanoparticles and its biomedical application. Bioprocess Biosyst Eng 2014;37:261–7.
  • Hara M, Akasaka K, Akinaga S, et al. Identification of Ras farnesyltransferase inhibitors by microbial screening. Proc Natl Acad Sci USA 1993;90:2281–5.
  • Del Villar K, Urano J, Guo L, Tamanoi F. A mutant form of human protein farnesyltransferase exhibits increased resistance to farnesyltransferase inhibitors. J Biol Chem 1999;274:27010–7.
  • Khosravi-Far R, Clark GJ, Abe K, et al. Ras (CXXX) and Rab (CC/CXC) prenylation signal sequences are unique and functionally distinct. J Biol Chem 1992;267:24363–8.
  • Shandukani PD, Tshidino SC, Masoko P, Moganedi KM. Antibacterial activity and in situ efficacy of Bidens pilosa Linn and Dichrostachys cinerea Wight et Arn extracts against common diarrhoea-causing waterborne bacteria. BMC Complement Altern Med 2018;18:171.
  • Abou Zeid AH, Hifnawy MS, Mohammed RS, Sleem AA. Lipoidal contents, analgesic and antipyretic activities of the aerial parts of Dichrostachys cinerea L. J Herbs Spices Med Plants 2015;21:118–28.
  • Liu M, Bryant MS, Chen J, et al. Antitumor activity of SCH 66336, an orally bioavailable tricyclic inhibitor of farnesyl protein transferase, in human tumor xenograft models and Wap-ras transgenic mice. Cancer Res 1998;58:4947.
  • Pereira DM, Valentão P, Andrade PB. Meroterpenes from marine invertebrates: chemistry and application in cancer. In: Handbook of anticancer drugs from marine origin. In: Kim S-K, editor. Cham: Springer International Publishing; 2015. p. 423–37.
  • Menna M, Aiello A, D’Aniello F, et al. Conithiaquinones A and B. Tetracyclic cytotoxic meroterpenes from the Mediterranean Ascidian Aplidium Conicum. Eur J Org Chem 2013;2013:3241–6.
  • Aiello A, Fattorusso E, Luciano P, et al. Antitumor effects of two novel naturally occurring terpene quinones isolated from the Mediterranean Ascidian Aplidium conicum. J Med Chem 2005;48:3410–6.
  • Grayfer TD, Grellier P, Mouray E, et al. Mallotojaponins B and C: total synthesis, antiparasitic evaluation, and preliminary SAR studies. Org Lett 2016;18:708–11.
  • Ragavendran C, Manigandan V, Kamaraj C, et al. Larvicidal, histopathological, antibacterial activity of indigenous fungus Penicillium sp. against Aedes aegypti L and Culex quinquefasciatus (Say) (Diptera: Culicidae) and its acetylcholinesterase inhibition and toxicity assessment of zebrafish (Danio rerio). Front Microbiol 2019;10:427–44.
  • Li F, Sun W, Zhang S, et al. New cyclopiane diterpenes with anti-inflammatory activity from the sea sediment-derived fungus Penicillium sp. TJ403-2. Chin Chem Lett 2019.
  • Shiomi K, Uchida R, Inokoshi J, et al. Andrastins A ∼ C, new protein farnesyltransferase inhibitors, produced by Penicillium sp. FO-3929. Tetrhedron Lett 1996;37:1265–8.
  • Jong SC, Davis EE. Contribution to the knowledge of Stachybotrys and Memnoniella in culture. Mycotaxon 1976;3:409–85.
  • Dearborn DG, Yike I, Sorenson WG, et al. Overview of investigations into pulmonary hemorrhage among infants in Cleveland, Ohio. Environ Health Perspect 1999;107:495–9.
  • Hummelbrunner LA, Isman MB. Acute, sublethal, antifeedant, and synergistic effects of monoterpenoid essential oil compounds on the tobacco cutworm, Spodoptera litura (Lep., Noctuidae). J Agric Food Chem 2001;49:715–20.
  • Crowell PL, Ren Z, Lin S, et al. Structure–activity relationships among monoterpene inhibitors of protein isoprenylation and cell proliferation. Biochem Pharmacol 1994;47:1405–15.
  • Maltzman TH, Hurt LM, Elson CE, et al. The prevention of nitrosomethylurea-induced mammary tumors by d-limonene and orange oil. Carcinogenesis 1989;10:781–3.
  • Wattenberg LW, Sparnins VL, Barany G. Inhibition of N-nitrosodiethylamine carcinogenesis in mice by naturally occurring organosulfur compounds and monoterpenes. Cancer Res 1989;49:2689–92.
  • Wattenberg LW, Coccia JB. Inhibition of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone carcinogenesis in mice by d-limonene and citrus fruit oils. Carcinogenesis 1991;12:115–7.
  • Bailey HH, Levy D, Harris LS, et al. A phase II trial of daily perillyl alcohol in patients with advanced ovarian cancer: Eastern Cooperative Oncology Group Study E2E96. Gynecol Oncol 2002;85:464–8.
  • Crowell PL, Lin S, Vedejs E, Gould MN. Identification of metabolites of the antitumor agent d-limonene capable of inhibiting protein isoprenylation and cell growth. Cancer Chemother Pharmacol 1992;31:205–12.
  • Crowell PL, Ayoubi AS, Burke YD. Antitumorigenic effects of limonene and perillyl alcohol against pancreatic and breast cancer. In: American Institute for Cancer Research, ed. Dietary phytochemicals in cancer prevention and treatment. Boston (MA): Springer; 1996. p. 131–6.
  • Ingawale AS, Sadiq MB, Nguyen LT, Ngan TB. Optimization of extraction conditions and assessment of antioxidant, α-glucosidase inhibitory and antimicrobial activities of Xanthium strumarium L. fruits. Biocatal Agric Biotechnol 2018;14:40–7.
  • Lin B, Zhao Y, Han P, et al. Anti-arthritic activity of Xanthium strumarium L. extract on complete Freund’s adjuvant induced arthritis in rats. J Ethnopharmacol 2014;155:248–55.
  • Nour AM, Khalid SA, Kaiser M, et al. The antiprotozoal activity of sixteen asteraceae species native to Sudan and bioactivity-guided isolation of xanthanolides from Xanthium brasilicum. Planta Med 2009;75:1363–8.
  • Matsuo K, Yokoe H, Shishido K, Shindo M. Synthesis of diversifolide and structure revision. Tetrahedron Lett 2008;49:4279–81.
  • Vasas A, Hohmann J. Xanthane sesquiterpenoids: structure, synthesis and biological activity. Nat Prod Rep 2011;28:824–42.
  • Feng J, Lei X, Bao R, et al. Enantioselective and collective total syntheses of xanthanolides. Angew Chem 2017;129:16541–5.
  • Dabrah TT, Harwood HJ, Huang LH, et al. ChemInform Abstract: CP-225,917 and CP-263,114, novel Ras farnesylation inhibitors from an unidentified fungus. Part 1. Taxonomy, fermentation, isolation, and biochemical properties. J Antibiot 2010;50:1–7.
  • Dabrah TT, Kaneko T, Massefski WB, Whipple E. CP225,917 and CP263,114: novel Ras farnesylation inhibitors from an unidentified fungus. 2. Structure elucidation. J Am Chem Soc 1997;119:1594–8.
  • Efferth T. From ancient herb to modern drug: artemisia annua and artemisinin for cancer therapy. Semin Cancer Biol 2017;46:65–83.
  • Megdiche-Ksouri W, Trabelsi N, Mkadmini K, et al. Artemisia campestris phenolic compounds have antioxidant and antimicrobial activity. Ind Crops Prod 2015;63:104–13.
  • Robles M, Aregullin M, West J, Rodriguez E. Recent studies on the zoopharmacognosy, pharmacology and neurotoxicology of sesquiterpene lactones. Planta Med 1995;61:199–203.
  • Picman AK. Biological activities of sesquiterpene lactones. Biochem Syst Ecol 1986;14:255–81.
  • Chen WJ, Moomaw JF, Overton L, et al. High level expression of mammalian protein farnesyltransferase in a baculovirus system. The purified protein contains zinc. J Biol Chem 1993;268:9675–80.
  • Jakupovic J, Tan RX, Bohlmann F, et al. Sesquiterpene lactones from Artemisia ludoviciana. Phytochemistry 1991;30:1573–7.
  • Li L, Liu H, Tang C, et al. Cytotoxic sesquiterpene lactones from Artemisia anomala. Phytochem Lett 2017;20:177–80.
  • Sadhu SK, Hirata K, Li X, et al. Flavonoids and sesquiterpenoids, constituents from Eupatorium capillifolium, found in a screening study guided by cell growth inhibitory activity. J Nat Med 2006;60:325–8.
  • Li Y, Zhou Z, Lou J, et al. Biological characteristics of Chaetomella sp. (Sphaeropsidaceae), a novel causal agent of sansevieria leaf spot disease. Sci Silvae Sin 2015;51:121–6.
  • Gangadevi V, Muthumary J. A novel endophytic taxol-producing fungus Chaetomella raphigera isolated from a medicinal plant, Terminalia arjuna. Appl Biochem Biotechnol 2009;158:675–84.
  • Singh S, Zink DM, Liesch J, et al. ChemInform abstract: isolation and structure of chaetomellic acids A and B from Chaetomella acutiseta: farnesyl pyrophosphate mimic inhibitors of Ras farnesyl-protein transferase. ChemInform 2010;24(43).
  • Lingham RB, Silverman KC, Bills GF, et al. Chaetomella acutiseta produces chaetomellic acids A and B which are reversible inhibitors of farnesyl-protein transferase. Appl Microbiol Biotechnol 1993;40:370–4.
  • Weber D, Sterner O, Anke T. Mollisianitrile, a new antibiotic from Mollisia sp. A59-96. Zeitschrift Für Naturforschung C 2007;62:567–70.
  • Wu HY, Yang FL, Li LH, et al. Ergosterol peroxide from marine fungus Phoma sp. induces ROS-dependent apoptosis and autophagy in human lung adenocarcinoma cells. Sci Rep 2018;8:17956.
  • Liu S-S, Jiang J-X, Huang R, et al. A new antiviral 14-nordrimane sesquiterpenoid from an endophytic fungus Phoma sp. Phytochem Lett 2019;29:75–8.
  • Izelmar T, Tássia CC, Luciana L, et al. Formulation of a bioherbicide with metabolites from Phoma sp. Sci Hortic 2018;241:285–92.
  • Hensens OD, Dufresne C, Liesch JM, et al. The zaragozic acids: structure elucidation of a new class of squalene synthase inhibitors. Tetrahedron Lett 1993;34:399–402.
  • Bergstrom JD, Kurtz MM, Rew DJ, et al. Zaragozic acids: a family of fungal metabolites that are picomolar competitive inhibitors of squalene synthase. Proc Natl Acad Sci USA 1993;90:80–4.
  • Wilson K, Burk R, Biftu T, et al. Zaragozic acid A, a potent inhibitor of squalene synthase: initial chemistry and absolute stereochemistry. J Org Chem. 1992;57:7151–8.
  • Dufresne C, Wilson KE, Zink D, et al. The isolation and structure elucidation of zaragozic acid C, a novel potent squalene synthase inhibitor. Tetrahedron 1992;48:10221–6.
  • Tanimoto T, Hamano K, Onodera K, et al. Biological activities of novel zaragozic acids, the potent inhibitors of squalene synthase, produced by the fungus, Mollisia sp. SANK 10294. J Antibiot (Tokyo). 1997;50:390–4.
  • Pedretti A, Villa L, Vistoli G. Modeling of binding modes and inhibition mechanism of some natural ligands of farnesyl transferase using molecular docking. J Med Chem 2002;45:1460–5.
  • Huang H, Gao P, Zhao Q, Hu H-F. Construction of a mutant of Actinoplanes sp. N902-109 that produces a new rapamycin analog. Chin J Nat Med 2018;16:210–8.
  • Liliya H, Bohdan O, Andriy L, et al. A gene cluster for the biosynthesis of moenomycin family antibiotics in the genome of teicoplanin producer Actinoplanes teichomyceticus. Appl Microbiol Biotechnol 2016;100:7629–38.
  • Silverman KC, Cascales C, Genilloud O, et al. Actinoplanic acids A and B as novel inhibitors of farnesyl-protein transferase. Appl Microbiol Biotechnol 1995;43:610–6.
  • Hinterding K, Hagenbuch P, Rétey J, Waldmann H. Synthesis and in vitro evaluation of the farnesyltransferase inhibitor pepticinnamin E. Chem Eur J 1999;5:227–36.
  • Shiomi K, Yang H, Inokoshi J, et al. Pepticinnamins, new farnesyl-protein transferase inhibitors produced by an actinomycete. II. Structural elucidation of pepticinnamin E. J Antibiot 1993;46:229–34.
  • Whitby M. Fusidic acid in the treatment of methicillin-resistant Staphylococcus aureus. Int J Antimicrob Agents 1999;12:S67–S71.
  • Godtfredsen WO, Jahnsen S, Lorck H, et al. Fusidic acid: a new antibiotic. Nature 1962;193:987.
  • Wu P-P, He H, Hong WD, et al. The biological evaluation of fusidic acid and its hydrogenation derivative as antimicrobial and anti-inflammatory agents. Infect Drug Resist 2018;11:1945–57.
  • Talontsi FM, Lamshöft M, Douanla-Meli C, et al. Antiplasmodial and cytotoxic dibenzofurans from Preussia sp. harboured in Enantia chlorantha Oliv. Fitoterapia 2014;93:233–8.
  • Babita P, Keshab B, Datta BH. Antimicrobial and antioxidant activities of two polyketides from lichen-endophytic fungus Preussia sp. Zeitschrift fur Naturforschung C J Biosci 2018;73:161–3.
  • Trenin A. Fungal secondary metabolites that inhibit sterol biosynthesis. Appl Biochem Microbiol 1998;34:117–23.
  • Weber HA, Baenziger NC, Gloer JB. Structure of preussomerin A: an unusual new antifungal metabolite from the coprophilous fungus Preussia isomera. J Am Chem Soc 1990;112:6718–9.
  • Weber HA, Gloer J. The preussomerins: novel antifungal metabolites from the coprophilous fungus Preussia isomera Cain. J Org Chem 1991;56:4355–60.
  • Polishook JD, Dombrowski AW, Tsou NN, et al. Preussomerin D from the endophyte hormonema dematioides. Mycologia 1993;85:62–4.
  • Gonçalves SS, Souza ACR, Chowdhary A, Meis JF, et al. Epidemiology and molecular mechanisms of antifungal resistance in Candida and Aspergillus. Mycoses 2016;59:198–219.
  • Schuster A, Schmoll M. Biology and biotechnology of Trichoderma. Appl Microbiol Biotechnol 2010;87:787–99.
  • Dennis C, Webster J. Antagonistic properties of species-groups of Trichoderma: I. Production of non-volatile antibiotics. Trans Br Mycol Soc 1971;57:25–39.
  • Shah DT, Larsen B. Clinical isolates of yeast produce a gliotoxin-like substance. Mycopathologia 1991;116:203–8.
  • Richardson C, Emery P. Clinical use of cyclosporin in rheumatoid arthritis. Drugs 1995;50:26–36.
  • Su-Jin J, Eun-Soo J, Eun-Kyung C, et al. Immunomodulatory effects of a mycelium extract of Cordyceps (Paecilomyces hepiali; CBG-CS-2): a randomized and double-blind clinical trial. BMC Complement Altern Med 2019;19:77–85.
  • Braun GH, Ramos HP, Candido ACBB, et al. Evaluation of antileishmanial activity of harzialactone a isolated from the marine-derived fungus Paecilomyces sp. Nat Prod Res 2019;33:1–4.
  • Gabriel D, Shafry DD, Gordon LB, Djabali K. Intermittent treatment with farnesyltransferase inhibitor and sulforaphane improves cellular homeostasis in Hutchinson-Gilford progeria fibroblasts. Oncotarget 2017;8:64809–26.
  • Tanaka T, Ikegami Y, Nakazawa H, et al. Low-dose farnesyltransferase inhibitor suppresses HIF-1α and snail expression in triple-negative breast cancer MDA-MB-231 cells in vitro. J Cell Physiol 2017;232:192–201.
  • Ding H, McDonald JS, Yun S, et al. Farnesyltransferase inhibitor tipifarnib inhibits Rheb prenylation and stabilizes Bax in acute myelogenous leukemia cells. Haematologica 2014;99:60–9.