1,902
Views
10
CrossRef citations to date
0
Altmetric
Research Paper

Unveiling the interaction profile of rosmarinic acid and its bioactive substructures with serum albumin

, , , , ORCID Icon, ORCID Icon & show all
Pages 786-804 | Received 16 Jan 2020, Accepted 05 Mar 2020, Published online: 23 Mar 2020

References

  • Rothman JE, Orci L. Molecular dissection of the secretory pathway. Nature 1992;355:409–15.
  • Bujacz A. Structures of bovine, equine and leporine serum albumin. Acta Crystallogr D Biol Crystallogr 2012;68:1278–89.
  • Fielding L, Rutherford S, Fletcher D. Determination of protein-ligand binding affinity by NMR: observations from serum albumin model systems. Magn Reson Chem 2005;43:463–70.
  • Ashbrook JD, Spector AA, Santos EC, Fletcher JE. Long chain fatty acid binding to human plasma albumin. J Biol Chem 1975;250:2333–8.
  • Ashbrook JD, Spectro AA, Fletcher JE. Medium chain fatty acid binding to human plasma albumin. J Biol Chem 1972;247:7038–42.
  • Sudlow G, Birkett DJ, Wade DN. The characterization of two specific drug binding sites on human serum albumin. Mol Pharmacol 1975;11:824–32.
  • Zhang Y, Yue Y, Li J, Chen X. Studies on the interaction of caffeic acid with human serum albumin in membrane mimetic environments. J Photochem Photobiol B Biol 2008;90:141–51.
  • Topala T, Bodoki A, Oprean L, Oprean R. Bovine serum albumin interactions with metal complexes. Clujul Med 2014;87:215–19.
  • Peng X, Wang X, Qi W, et al. Affinity of rosmarinic acid to human serum albumin and its effect on protein conformation stability. Food Chem 2016;192:178–87.
  • Khojasteh A, Mirjalili MH, Hidalgo D, et al. New trends in biotechnological production of rosmarinic acid. Biotechnol Lett 2014;36:2393–406.
  • Park DH, Park SJ, Kim JM, et al. Subchronic administration of rosmarinic acid, a natural prolyl oligopeptidase inhibitor, enhances cognitive performances. Fitoterapia 2010;81:644–8.
  • Petersen M, Simmonds MS. Rosmarinic acid. Phytochemistry 2003;62:121–5.
  • Martínez-Tomé M, Jiménez AM, Ruggieri S, et al. Antioxidant properties of mediterranean spices compared with common food additives. J. Food Prot 2001;64:1412–9.
  • Murata T, Sasaki K, Sato K, et al. Matrix metalloproteinase-2 inhibitors from Clinopodium chinense var. parviflorum. J Nat Prod 2009;72:1379–84.
  • Sidoryk K, Filip K, Cmoch P, et al. Efficient synthesis and physicochemical characterization of natural danshensu, its S isomer and intermediates thereof. J Mol Struct 2018;1153:135–48.
  • Fink E. Health behavior from the gender perspective – the concept of “doing genders” and the perspective of intersectionality as an explanation. Gesundheitswesen 2015;77:880.
  • Murata T, Oyama K, Fujiyama M, et al. Diastereomers of lithospermic acid and lithospermic acid B from Monarda fistulosa and Lithospermum erythrorhizon. Fitoterapia 2013;91:51–9.
  • Wong HNC, Xu ZL, Chang HM, Lee CM. A modified synthesis of (±)-β-aryllactic acids. Synthesis (Stuttg) 1992;1992:793–7.
  • Zhang Q-Z, Wang Y, Nan Y-F, et al. Green synthesis of β - (3, 4-dihydroxyphenyl) lactic acid. Asian J Chem 2013;25:7158–60.
  • Dai J, Sorribas A, Yoshida WY, Williams PG. Sebestenoids A-D, BACE1 inhibitors from Cordia sebestena. Phytochemistry 2010;71:2168–73.
  • Li W, Zhou S, Jin Y, et al. Salvianolic acids T and U: a pair of atropisomeric trimeric caffeic acids derivatives from root of Salvia miltiorrhiza. Fitoterapia 2014;98:248–53.
  • Theodorou V, Skobridis K, Tzakos AG, Ragoussis V. A simple method for the alkaline hydrolysis of esters. Tetrahedron Lett 2007;48:8230–3.
  • Primikyri A, Chatziathanasiadou MV, Karali E, et al. Direct binding of Bcl-2 family proteins by quercetin triggers its pro-apoptotic activity. ACS Chem Biol 2014;9: 2737–41..
  • Kellici TF, Chatziathanasiadou MV, Lee M, et al. Rational design and structure–activity relationship studies of quercetin–amino acid hybrids targeting the anti-apoptotic protein Bcl-xL. Biomol Chem 2017;15:7956–76.
  • Rawel HM, Frey SK, Meidtner K, et al. Determining the binding affinities of phenolic compounds to proteins by quenching of the intrinsic tryptophan fluorescence. Mol Nutr Food Res 2006;50:705–13.
  • Mayer M, Meyer B. Group epitope mapping by saturation transfer difference NMR to identify segments of a ligand in direct contact with a protein receptor. J Am Chem Soc 2001;123:6108–17.
  • Yan J, Kline AD, Mo H, et al. The effect of relaxation on the epitope mapping by saturation transfer difference NMR. J Magn Reson 2003;163:270–6.
  • Zelenko U, Hodošček M, Rozman D, et al. Structural insight into the unique binding properties of pyridylethanol(phenylethyl)amine inhibitor in human Cyp51. J Chem Inf Model 2014;54:3384–95.
  • Molodenskiy D, Shirshin E, Tikhonova T, et al. Thermally induced conformational changes and protein-protein interactions of bovine serum albumin in aqueous solution under different pH and ionic strengths as revealed by SAXS measurements. Phys Chem Chem Phys 2017;19:17143–55.
  • High-purity magnesium lithospermate B and preparation method therefor, Patent US2017137399; 2018. PubChem. Available from: https://pubchem.ncbi.nlm.nih.gov/patent/US2017137399#section=Top [last accessed 11 Sep 2018].
  • Lam FFY, Yeung JHK, Chan KM, Mei Yu Or P. Relaxant effects of danshen aqueous extract and its constituent danshensu on rat coronary artery are mediated by inhibition of calcium channels. Vascul Pharmacol 2007;46:271–7.
  • Bubl EC, Butts JS. A method of synthesis of phenyllactic acid and substituted phenyllactic acids. J Am Chem Soc 1951;73:4972.
  • Sayyed IA, Sudalai A. Asymmetric synthesis of L-DOPA and (R)-selegiline via, OsO4-catalyzed asymmetric dihydroxylation. Tetrahedron Asymmetry 2004;15:3111–16.
  • Jun HW, Mayer RT, Himel CM, Luzzi LA. Binding study of P-hydroxybenzoic acid esters to bovine serum albumin by fluorescent probe technique. J Pharm Sci 1971:60;1821–5.
  • Chatziathanasiadou MV, Geromichalou EG, Sayyad N, et al. Amplifying and broadening the cytotoxic profile of quercetin in cancer cell lines through bioconjugation. Amino Acids 2018;50:279–91.
  • Chatzikonstantinou AV, Chatziathanasiadou MV, Ravera E, et al. Enriching the biological space of natural products and charting drug metabolites, through real time biotransformation monitoring: the NMR tube bioreactor. Biochim Biophys Acta Gen Subj 2018;1862:1–8.
  • Suresh PK, Divya N, Nidhi S, Rajasekaran R. Phenytoin-bovine serum albumin interactions– modeling plasma protein–drug binding: a multi-spectroscopy and in silico-based correlation. Spectrochim Acta A Mol Biomol Spectrosc 2018;193:523–527.
  • Guercia E, Forzato C, Navarini L, Berti F. Interaction of coffee compounds with serum albumins. Part II: diterpenes. Food Chem 2016;199:502–8.
  • Politi M, Chávez MI, Cañada FJ, Jiménez-Barbero J. Screening by NMR: a new approach for the study of bioactive natural products? The Example of Pleurotus ostreatus hot water extract. European J Org Chem 2005;1:1392–6.
  • Mayer M, Meyer B. Characterization of ligand binding by saturation transfer difference NMR spectroscopy. Angew Chem Int Ed Engl 1999;35:1784–8.
  • Simčić M, Hodošček M, Humljan J, et al. NMR and molecular dynamics study of the binding mode of naphthalene-N-sulfonyl-D-glutamic acid derivatives: novel MurD ligase inhibitors. J Med Chem 2009;52:2899–908.
  • Post CB. Exchange-transferred NOE spectroscopy and bound ligand structure determination. Curr Opin Struct Biol 2003;13:581–8.
  • Tanoli SAK, Tanoli NU, Bondancia TM, et al. Human serum albumin-specific recognition of the natural herbal extract of stryphnodendron polyphyllum through STD NMR, hyphenations and docking simulation studies. RSC Adv 2015;5:23431–42.
  • Habtemariam S. Molecular pharmacology of rosmarinic and salvianolic acids: potential seeds for Alzheimer’s and vascular dementia drugs. Int J Mol Sci 2018;19:458.
  • Petersen M, Abdullah Y, Benner J, et al. Evolution of rosmarinic acid biosynthesis. Phytochemistry 2009;70:1663–79.
  • Brito E, Silva A, Falé P, et al. Serum albumin modulates the bioactivity of rosmarinic acid. J Med Food 2018;21:801–07.
  • Peng X, Wang X, Qi W, et al. Deciphering the binding patterns and conformation changes upon the bovine serum albumin–rosmarinic acid complex. Food Funct 2015;6:2712–26.
  • Sinisi V, Forzato C, Cefarin N, et al. Interaction of chlorogenic acids and quinides from coffee with human serum albumin. Food Chem 2015;168:332–40.
  • Xiang Y, Duan L, Ma Q, et al. Fluorescence spectroscopy and molecular simulation on the interaction of caffeic acid with human serum albumin. Luminescence 2016;31:1496–502.
  • Liu R, Yu X, Gao W, et al. Study on the interaction between salvianic acid a sodium and bovine serum albumin by spectroscopic methods. Spectrochim Acta A Mol Biomol Spectrosc 2011;78:1535–9.
  • Song Q, Zhang Y, Han X, et al. Potential mechanisms underlying the protective effects of salvianic acid A against atherosclerosis in vivo and vitro. Biomed Pharmacother 2019;109:945–56.
  • Gao L, Siu PM, Chan S, Lai CWK. Cardiovascular protective effects of salvianic acid A on Db/Db Mice with Elevated Homocysteine Level. Oxid Med Cell Longev 2017;2017:9506925.
  • Jia D, Zhang C, Qiu Y, et al. Cardioprotective mechanisms of salvianic acid A sodium in rats with myocardial infarction based on proteome and transcriptome analysis. Acta Pharmacol Sin 2019:40;1513–22.
  • Song Q, Chu X, Zhang X, et al. Mechanisms underlying the cardioprotective effect of salvianic acid A against isoproterenol-induced myocardial ischemia injury in rats: possible involvement of L-type calcium channels and myocardial contractility. J Ethnopharmacol 2016;189:157–64.
  • Ang CW, Fu-lu MA, Iu JL, et al. Protective effect of salvianic acid A on acute liver injury induced by carbon tetrachloride in rats. Biol Pharm Bull 2007;30:44–7.
  • Beutler JA. Natural products as a foundation for drug discovery. Curr Protoc Pharmacol 2019;86:1–28.
  • Raune ANB, Unzel MIB, Onekura REY, Laut MIB. Conversion of dehydrodiferulic acids by human intestinal microbiota. J Agric Food Chem 2009:57;3356–62.
  • Kahn T, Bosch J, Levitt MF, Goldstein MH. Effect of sodium nitrate loading on electrolyte transport by the renal tubule. Am J Physiol 1975;229:746–53.
  • Ehrhart IC, Parker PE, Weidner WJ, et al. Coronary vascular and myocardial responses to carotid body stimulation in the dog. Am J Physiol 1975;229:754–60.
  • Jin X-L, Wei X, Qi F-M, et al. Characterization of hydroxycinnamic acid derivatives binding to bovine serum albumin. Org Biomol Chem 2012;10:3424.
  • Li S, Huang K, Zhong M, et al. Comparative studies on the interaction of caffeic acid, chlorogenic acid and ferulic acid with bovine serum albumin. Spectrochim Acta A Mol Biomol Spectrosc 2010;77:680–6.
  • Precupas A, Sandu R, Leonties AR, et al. Complex interaction of caffeic acid with bovine serum albumin: calorimetric, spectroscopic and molecular docking evidence. New J Chem 2017;41:15003–15.
  • Skrt M, Benedik E, Podlipnik Č, Ulrih NP. Interactions of different polyphenols with bovine serum albumin using fluorescence quenching and molecular docking. Food Chem 2012;135:2418–24.