1,973
Views
20
CrossRef citations to date
0
Altmetric
Research Paper

The selenium-containing drug ebselen potently disrupts LEDGF/p75-HIV-1 integrase interaction by targeting LEDGF/p75

ORCID Icon, , , , , & show all
Pages 906-912 | Received 09 Jan 2020, Accepted 10 Mar 2020, Published online: 31 Mar 2020

References

  • Zhang D, Guo J, Zhang M, et al. Oxazole-containing diterpenoids from cell cultures of Salvia miltiorrhiza and their anti-HIV-1 activities. J Nat Prod 2017;80:3241–6.
  • Wainberg MA, Zaharatos GJ, Brenner BG. Development of antiretroviral drug resistance. N Engl J Med 2011;365:637–46.
  • Barton KM, Burch BD, Soriano-Sarabia N, Margolis DM. Prospects for treatment of latent HIV. Clin Pharmacol Ther 2013;93:46–56.
  • McColl DJ, Chen X. Strand transfer inhibitors of HIV-1 integrase: bringing IN a new era of antiretroviral therapy. Antiviral Res 2010;85:101–18.
  • Pendri A, Meanwell NA, Peese KM, Walker MA. New first and second generation inhibitors of human immunodeficiency virus-1 integrase. Expert Opin Ther Pat 2011;21:1173–89.
  • Engelman AN. Multifaceted HIV integrase functionalities and therapeutic strategies for their inhibition. J Biol Chem 2019;294:15137–57.
  • Summa V, Petrocchi A, Bonelli F, et al. Discovery of raltegravir, a potent, selective orally bioavailable HIV-integrase inhibitor for the treatment of HIVAIDS infection. J Med Chem 2008;51:5843–55.
  • Rowley M. The discovery of raltegravir, an integrase inhibitor for the treatment of HIV infection. Prog Med Chem 2008;46:1–26.
  • Sato M, Kawakami H, Motomura T, et al. Quinolone carboxylic acids as a novel monoketo acid class of human immunodeficiency virus type 1 integrase inhibitors. J Med Chem 2009;52:4869–82.
  • Johns BA, Kawasuji T, Weatherhead JG, et al. Carbamoyl pyridone HIV-1 integrase inhibitors 3. A diastereomeric approach to chiral nonracemic tricyclic ring systems and the discovery of dolutegravir (S/GSK1349572) and (S/GSK1265744). J Med Chem 2013;56:5901–16.
  • Tsiang M, Jones GS, Goldsmith J, et al. Antiviral activity of bictegravir (GS-9883), a novel potent hiv-1 integrase strand transfer inhibitor with an improved resistance profile. Antimicrob. Agents Chemother 2016;60:7086–97.
  • Fenwick CW, Tremblay S, Wardrop E, et al. Resistance studies with HIV-1 non-catalytic site integrase inhibitors. Antivir Ther 2011;16: (Suppl. 1):A9.
  • Fader LD, Malenfant E, Parisien M, et al. Discovery of BI224436, a noncatalytic site integrase inhibitor (NCINI) of HIV-1. ACS Med Chem Lett 2014;5:422–7.
  • Christ F, Voet A, Marchand A, et al. Rational design of small-molecule inhibitors of the LEDGF/p75-integrase interaction and HIV replication. Nat Chem Biol 2010;6:442–8.
  • Kessl JJ, Jena N, Koh Y, et al. Multimode, cooperative mechanism of action of allosteric HIV-1 integrase inhibitors. J Biol Chem 2012;287:16801–11.
  • Balakrishnan M, Yant SR, Tsai L, et al. Non-catalytic site HIV-1 integrase inhibitors disrupt core maturation and induce a reverse transcription block in target cells. PLoS One 2013;8:e74163.
  • Le Rouzic E, Bonnard D, Chasset S, et al. Dual inhibition of HIV-1 replication by integrase-LEDGF allosteric inhibitors is predominant at the post-integration stage. Retrovirology 2013;10:144.
  • Sharma A, Slaughter A, Jena N, et al. A new class of multimerization selective inhibitors of HIV-1 integrase. PloS Pathog 2014;10:e1004171.
  • Ciuffi A, Llano M, Poeschla E, et al. A role for LEDGF/p75 in targeting HIV DNA integration. Nat Med 2005;11:1287–9.
  • Cherepanov P, Ambrosio AL, Rahman S, et al. Structural basis for the recognition between HIV-1 integrase and transcriptional coactivator p75. Proc Natl Acad Sci USA 2005;102:17308–13.
  • Demeulemeester J, Chaltin P, Marchand A, et al. LEDGINs, non-catalytic site inhibitors of HIV-1 integrase: a patent review (2006–2014). Expert Opin Ther Pat 2014;24:609–32.
  • Jurado KA, Wang H, Slaughter A, et al. Allosteric integrase inhibitor potency is determined through the inhibition of HIV-1 particle maturation. Proc Natl Acad Sci USA 2013;110:8690–5.
  • Desimmie BA, Schrijvers R, Demeulemeester J, et al. LEDGINs inhibit late stage HIV-1 replication by modulating integrase multimerization in the virions. Retrovirology 2013;10:57.
  • Fontana J, Jurado KA, Cheng N, et al. Distribution and redistribution of HIV-1 nucleocapsid protein in immature, mature, and integrase-inhibited virions: a role for integrase in maturation. J Virol 2015;89:9765–80.
  • Feng L, Sharma A, Slaughter A, et al. The A128T resistance mutation reveals aberrant protein multimerization as the primary mechanism of action of allosteric HIV-1 integrase inhibitors. J Biol Chem 2013;288:15813–20.
  • Kessl JJ, Kutluay SB, Townsend D, et al. HIV-1 integrase binds the viral RNA genome and is essential during virion morphogenesis. Cell 2016;166:1257–68.
  • Desimmie BA, Humbert M, Lescrinier E, et al. Phage display-directed discovery of LEDGF/p75 binding cyclic peptide inhibitors of HIV replication. Mol Ther 2012;20:2064–75.
  • Bao L, Hannon C, Cruz-Mignoni A, et al. Intracellular immunization against HIV infection with an intracellular antibody that mimics HIV integrase binding to the cellular LEDGF protein. Sci Rep 2017;7:16869.
  • Zhang DW, He HQ, Liu MM, Meng ZX, et al. A novel assay for screening inhibitors targeting HIV integrase LEDGF/p75 interaction based on Ni2+ coated magnetic agarose beads. Sci Rep 2016;6:33477.
  • Fenwick C, Bailey MD, Bethell R, Bös M, et al. Preclinical profile of BI 224436, a novel HIV-1 non-catalytic-site integrase inhibitor. Antimicrob Agents Chemother 2014;58:3233–44.
  • Zhang JH, Chung TD, Oldenburg KR. A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J Biomol Screen 1999;4:67–73.
  • Xu S, Aguilar A, Xu T, et al. Design of the first‐in‐class, highly potent irreversible inhibitor targeting the menin‐MLL protein–protein interaction. Angew Chem Int Ed Engl 2018;57:1601–5.
  • Cherepanov P, Devroe E, Silver PA, Engelman A. Identification of an evolutionarily conserved domain in human lens epithelium-derived growth factor/transcriptional co-activator p75 (LEDGF/p75) that binds HIV-1 integrase. J Biol Chem 2004;279:48883–92.
  • Azad GK, Tomar RS. Ebselen, a promising antioxidant drug: mechanisms of action and targets of biological pathways. Mol Biol Rep 2014;41:4865–79.
  • Tsiang M, Jones GS, Hung M, et al. Dithiothreitol causes HIV-1 integrase dimer dissociation while agents interacting with the integrase dimer interface promote dimer formation. Biochemistry 2011;50:1567–81.
  • Singh J, Petter RC, Baillie TA, Whitty A. The resurgence of covalent drugs. Nat Rev Drug Discov 2011;10:307–17.
  • Cryan LM, Habeshian KA, Caldwell TP, et al. Identification of small molecules that inhibit the interaction of TEM8 with anthrax protective antigen using a FRET assay. J Biomol Screen 2013;18:714–25.
  • Hombrouck A, De Rijck J, Hendrix J, et al. Virus evolution reveals an exclusive role for LEDGF/p75 in chromosomal tethering of HIV. PLoS Pathog 2007;3:e47.
  • Thenin-Houssier S, De Vera IMS, Pedro-Rosa L, et al. Ebselen, a small-molecule capsid inhibitor of HIV-1 replication. Antimicrob Agents Chemother 2016;60:2195–208.
  • ElAshkar S, Schwaller J, Pieters T, et al. LEDGF/p75 is dispensable for hematopoiesis but essential for MLL-rearranged leukemogenesis. Blood 2018;131:95–107.
  • Murai MJ, Pollock J, He S, et al. The same site on the integrase-binding domain of lens epithelium–derived growth factor is a therapeutic target for MLL leukemia and HIV. Blood 2014;124:3730–7.
  • Leroux F, Bosc D, Beghyn T, et al. Identification of ebselen as a potent inhibitor of insulin degrading enzyme by a drug repurposing screening. Eur J Med Chem 2019;179:55–66.
  • Bessoff K, Sateriale A, Lee KK, Huston CD. Drug repurposing screen reveals FDA-approved inhibitors of human HMG-CoA reductase and isoprenoid synthesis that block Cryptosporidium parvum growth. Antimicrob Agents Chemother 2013;57:1804–14.
  • Lockhart DE, Schuettelkopf A, Blair DE, van Aalten DM. Screening-based discovery of Aspergillus fumigatus plant-type chitinase inhibitors. FEBS Lett 2014;588:3282–90.
  • Milhas S, Raux B, Betzi S, et al. Protein-protein interaction inhibition (2P2I)-oriented chemical library accelerates hit discovery. ACS Chem Biol 2016;11:2140–8.
  • Eltahan R, Guo F, Zhang H, et al. Discovery of ebselen as an inhibitor of Cryptosporidium parvum glucose-6-phosphate isomerase (CpGPI) by high-throughput screening of existing drugs. Int J Parasitol Drugs Drug Resist 2018;8:43–9.
  • Gordhan HM, Patrick SL, Swasy MI, et al. Evaluation of substituted ebselen derivatives as potential trypanocidal agents. Bioorg Med Chem Lett 2017;27:537–41.
  • Lu J, Vlamis-Gardikas A, Kandasamy K, et al. Inhibition of bacterial thioredoxin reductase: an antibiotic mechanism targeting bacteria lacking glutathione. Faseb J 2013;27:1394–403.
  • Gustafsson TN, Osman H, Werngren J, et al. Ebselen and analogs as inhibitors of Bacillus anthracis thioredoxin reductase and bactericidal antibacterials targeting Bacillus species, Staphylococcus aureus and Mycobacterium tuberculosis. Biochim Biophys Acta 2016;1860:1265–71.
  • Bender KO, Garland M, Ferreyra JA, et al. A small-molecule antivirulence agent for treating Clostridium difficile infection. Sci Transl Med 2015;7:306ra148.
  • Chiou J, Wan S, Chan KF, et al. Ebselen as a potent covalent inhibitor of New Delhi metallo-β-lactamase (NDM-1). Chem Commun (Camb) 2015;51:9543–6.
  • Favrot L, Grzegorzewicz AE, Lajiness DH, et al. Mechanism of inhibition of Mycobacterium tuberculosis antigen 85 by ebselen. Nat Commun 2013;4:2748.
  • Mukherjee S, Weiner WS, Schroeder CE, et al. Ebselen inhibits hepatitis C virus NS3 helicase binding to nucleic acid and prevents viral replication. ACS Chem Biol 2014;9:2393–403.
  • Sarwono AEY, Mitsuhashi S, Kabir MHB, et al. Repurposing existing drugs: identification of irreversible IMPDH inhibitors by high-throughput screening. J Enzyme Inhib Med Chem 2019;34:171–8.
  • Lieberman OJ, Orr MW, Wang Y, Lee VT. High-throughput screening using the differential radial capillary action of ligand assay identifies ebselen as an inhibitor of diguanylate cyclases. ACS Chem Biol 2014;9:183–92.