1,279
Views
6
CrossRef citations to date
0
Altmetric
Review Article

Intra-site differential inhibition of multi-specific enzymes

, , , &
Pages 840-846 | Received 17 Feb 2020, Accepted 12 Mar 2020, Published online: 25 Mar 2020

References

  • Skidgel RA, Erdös EG. The broad substrate specificity of human angiotensin I converting enzyme. Clin Exp Hypertens 1987;9:243–59.
  • Park KH, Kim TJ, Cheong TK, et al. Structure, specificity and function of cyclomaltodextrinase, a multispecific enzyme of the alpha-amylase family. Biochim Biophys Acta 2000;1478:165–85.
  • Chakraborty S, Asgeirsson B, Rao BJ. A Measure of the broad substrate specificity of enzymes based on ‘duplicate’ catalytic residues. PLOS One 2012;7:e49313.
  • Khersonsky O, Roodveldt C, Tawfik DS. Enzyme promiscuity: evolutionary and mechanistic aspects. Curr Opin Chem Biol 2006;10:498–508.
  • Hult K, Berglund P. Enzyme promiscuity: mechanism and applications. Trends Biotechnol 2007;25:231–7.
  • Copley SD. Enzymes with extra talents: moonlighting functions and catalytic promiscuity. Curr Opin Chem Biol 2003;7:265–72.
  • Huberts D, van der Klei IJ. Moonlighting proteins: an intriguing mode of multitasking. Biochim Biophys Acta 2010;1083:520–5.
  • O’Brien PJ, Herschlag D. Catalytic promiscuity and the evolution of new enzymatic activities. Chem Biol 1999;6:R91–RlO5.
  • Aharoni A, Gaidukov L, Khersonsky O, et al. The ‘evolvability’ of promiscuous protein functions. Nat Genet 2005;37:73–6.
  • Khersonsky O, Tawfik DS. Enzyme promiscuity: a mechanistic and evolutionary perspective. Annu Rev Biochem 2010;79:471–505.
  • Erijman A, Aizner Y, Shifman JM. Multispecific recognition: mechanism, evolution, and design. Biochemistry 2011;50:602–11.
  • Levin M, Amar D, Aharoni A. Employing directed evolution for the functional analysis of multi-specific proteins. Bioorg Med Chem 2013;21:3511–6.
  • Del-Corso A, Cappiello M, Moschini R, et al. How the chemical features of molecules may have addressed the settlement of metabolic steps. Metabolomics 2018;14:2.
  • Del-Corso A, Cappiello M, Moschini R, et al. The furanosidic scaffold of D-ribose: a milestone for cell life. Biochem Soc Trans 2019;47:1931–40.
  • Del-Corso A, Balestri F, Di Bugno E, et al. A new approach to control the enigmatic activity of aldose reductase. PLOS One 2013;8:e74076.
  • Cappiello M, Moschini R, Balestri F, et al. Basic models for differential inhibition of enzymes. Biochem Biophys Res Commun 2014;445:556–60.
  • Berger I, Guttman C, Amar D, et al. The molecular basis for the broad substrate specificity of human sulfotransferase 1A1. PLOS One 2011;6:e26794.
  • Gonzalez-Villalobos RA, Shen XZ, Bernstein EA, et al. Rediscovering ACE: novel insights into the many roles of the angiotensin-converting enzyme. J Mol Med (Berl) 2013;91:1143–54.
  • Del-Corso A, Cappiello M, Mura U. From a dull enzyme to something else: facts and perspectives regarding aldose reductase. Curr Med Chem 2008;15:1452–61.
  • Misuri L, Cappiello M, Balestri F, et al. The use of dimethylsulfoxide as a solvent in enzyme inhibition studies: the case of aldose reductase. J Enz Inhib Med Chem 2017;32:1152–8.
  • Kinoshita JH. A thirty year journey in the polyol pathway. Exp Eye Res 1990;50:567–73.
  • (a) Cappiello M, Voltarelli M, Giannessi M, et al. Glutathione dependent modification of bovine lens aldose reductase. Exp Eye Res 1994;58:491–501. (b) Hayman S, Kinoshita JH. Isolation and properties of lens aldose reductase. J Biol Chem 1965;240:877–82.
  • Petrash JM, Harter TM, Devine CS, et al. Involvement of cysteine residues in catalysis and inhibition of human aldose reductase. Site-directed mutagenesis of Cys-80, -298, and -303. J Biol Chem 1992;267:24833–40.
  • Bhatnagar A, Liu SQ, Ueno N, et al. Human placental aldose reductase: role of Cys-298 in substrate and inhibitor binding. Biochim Biophys Acta 1994;1205:207–14.
  • Gabbay KH, Tze WJ. Inhibition of glucose-induced release of insulin by aldose reductase inhibitors. Proc Natl Acad Sci USA 1972;69:1435–9.
  • Vander Jagt DL, Hunsaker LA, Robinson B, et al. Aldehyde and aldose reductases from human placenta. Heterogeneous expression of multiple enzyme forms. J Biol Chem 1990;265:10912–8.
  • Yancey P, Clark M, Hand S, et al. Living with water stress: evolution of osmolyte systems. Science 1982;217:1214–22.
  • Bagnasco S, Balaban R, Fales HM, et al. Predominant osmotically active organic solutes in rat and rabbit renal medullas. J Biol Chem 1986;261:5872–7.
  • Yabe-Nishimura C. Aldose reductase in glucose toxicity: a potential target for the prevention of diabetic complications. Pharmacol Rev 1998;50:21–33.
  • Oyama T, Miyasita Y, Watanabe H, Shirai K. The role of polyol pathway in high glucose-induced endothelial cell damages. Diabetes Res Clin Pract 2006;73:227–34.
  • Lorenzi M. The polyol pathway as a mechanism for diabetic retinopathy: attractive, elusive, and resilient. Exp Diabetes Res 2007;2007:61038.
  • Alexiou P, Pegklidou K, Chatzopoulou M, et al. Aldose reductase enzyme and its implication to major health problems of the 21st century. Curr Med Chem 2009;16:734–52.
  • Maccari R, Ottanà R. Targeting aldose reductase for the treatment of diabetes complications and inflammatory diseases: new insights and future directions. J Med Chem 2015;58:2047–67.
  • Grewal AS, Bhardwaj S, Pandita D, et al. Updates on aldose reductase inhibitors for management of diabetic complications and non-diabetic diseases. Mini Rev Med Chem 2016;16:120–62.
  • ElGamal H, Munusamy S. Aldose reductase as a drug target for treatment of diabetic nephropathy: promises and challenges. Protein Pept Lett 2017;24:71–7.
  • Chatzopoulou M, Pegklidou K, Papastavrou N, Demopoulos VJ. Development of aldose reductase inhibitors for the treatment of inflammatory disorders. Expert Opin Drug Discov 2013;8:1365–80.
  • Colín-Lozano B, Estrada-Soto S, Chávez-Silva F, et al. Design, synthesis and in combo antidiabetic bioevaluation of multitarget phenylpropanoic acids. Molecules 2018;23.
  • Maccari R, Del-Corso A, Paoli P, et al. An investigation on 4-thiazolidinone derivatives as dual inhibitors of aldose reductase and protein tyrosine phosphatase 1B, in the search for potential agents for the treatment of type 2 diabetes mellitus and its complications. Bioorg Med Chem Lett 2018;28:3712–20.
  • Srivastava S, Chandra A, Bhatnagar A, et al. Lipid peroxidation product, 4-hydroxynonenal and its conjugate with GSH are excellent substrates of bovine lens aldose reductase. Biochem Biophys Res Commun 1995;217:741–6.
  • Vander Jagt DL, Kolb NS, Vander Jagt TJ, et al. Substrate specificity of human aldose reductase: identification of 4-hydroxynonenal as an endogenous substrate. Biochim Biophys Acta 1995;1249:117–26.
  • Srivastava S, Watowich SJ, Petrash JM, et al. Structural and kinetic determinants of aldehyde reduction by aldose reductase. Biochemistry 1999;38:42–54.
  • Grimshaw CE. Aldose reductase: model for a new paradigm of enzymic perfection in detoxification catalysts. Biochemistry 1992;31:10139–45.
  • Hubatsch I, Ridderstrom M, Mannervik B. Human glutathione transferase A4-4: An alpha class enzyme with high catalytic e_ciency in the conjugation of 4-hydroxynonenal and other genotoxic products of lipid peroxidation. Biochem J 1998;330:175–9.
  • Hou L, Honaker MT, Shireman LM, et al. Functional promiscuity correlates with conformational heterogeneity in A-class glutathione S-transferases. J Biol Chem 2007;282:23264–74.
  • Ramana KV, Dixit BL, Srivastava S, et al. Selective recognition of glutathiolated aldehydes by aldose reductase. Biochemistry 2000;39:12172–80.
  • Esterbauer H, Schaur RJ, Zollner H. Chemistry and biochemistry of 4-hydroxynonenal, malondialdehyde and related aldehydes. Free Radic Biol Med 1991;11:81–128.
  • Frohnert BI, Bernlohr DA. Glutathionylated products of lipid peroxidation. A novel mechanism of adipocyte to macrophage signaling. Adipocyte 2014;3:224–9.
  • Frohnert BI, Long EK, Hahn WS, Bernlohr DA. Glutathionylated lipid aldehydes are products of adipocyte oxidative stress and activators of macrophage inflammation. Diabetes 2014;63:89–100.
  • Srivastava S, Ramana KV, Bhatnagar A, Srivastava SK. Synthesis, quantification, characterization, and signaling properties of glutathionyl conjugates of enals. Meth Enzymol 2010;474:297–313.
  • Chang KC, Petrash JM. Aldo-keto reductases: Multifunctional proteins as therapeutic targets in diabetes and inflammatory disease. Adv Exp Med Biol 2018;1032:173–202.
  • Balestri F, Cappiello M, Moschini R, et al. Modulation of aldose reductase activity by aldose hemiacetals. Biochim Biophys Acta 2015;1850:2329–39.
  • Cappiello M, Balestri F, Moschini R, et al. Apparent cooperativity and apparent hyperbolic behavior of enzyme mixtures acting on the same substrate. J Enz Inhib Med Chem 2016;31:1556–9.
  • Balestri F, Cappiello M, Moschini R, et al. l-Idose: an attractive substrate alternative to d-glucose for measuring aldose reductase activity. Biochem Biophys Res Commun 2015;456:891–5.
  • Balestri F, Quattrini L, Coviello V, et al. Acid derivatives of pyrazolo[1,5-α] pyrimidine as aldose reductase differential inhibitors. Cell Chem Biol 2018;25:1414–8.
  • Balestri F, Sorce C, Moschini R, et al. Edible vegetables as a source of aldose reductase differential inhibitors. Chem Biol Interact 2017;276:155–9.
  • Balestri F, Rotondo R, Moschini R, et al. Zolfino landrace (Phaseolus vulgaris L.) from Pratomagno: general and specific features of a functional food. Food Nutr Res 2016;60:31792.
  • Balestri F, De Leo M, Sorce C, et al. Soyasaponins from Zolfino bean as aldose reductase differential inhibitors. J Enz Inhib Med Chem 2019;34:350–60.