4,244
Views
60
CrossRef citations to date
0
Altmetric
Research Paper

Synthesis, characterisation, biological evaluation and in silico studies of sulphonamide Schiff bases

, , , , , ORCID Icon, , , , , ORCID Icon & ORCID Icon show all
Pages 950-962 | Received 23 Feb 2020, Accepted 16 Mar 2020, Published online: 05 Apr 2020

References

  • Freeman BA, Crapo JD. Biology of disease: free radicals and tissue injury. Lab Invest 1982;47:412–26.
  • Lunec J, Blake D. Oxygen free radicals: their relevance to disease processes. In Cohen RD, Lewis B, eds. The metabolic and molecular basis of acquired disease. London: Balliere Tindall; 1990:189–212.
  • Budak H, Ceylan H, Kocpinar EF, et al. Expression of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase in oxidative stress induced by long-term iron toxicity in rat liver. J Biochem Mol Toxicol 2014;28:217–23.
  • Işık M, Beydemir Ş, Yılmaz A, et al. Oxidative stress and mRNA expression of acetylcholinesterase in the leukocytes of ischemic patients. Biomed Pharmacother 2017;87:561–7.
  • Babior BM. Phagocytes and oxidative stress. Am J Med 2000;109:33–44.
  • Sies H. Oxidative stress: from basic research to clinical application. Am J Med 1991;91:S31–S38.
  • Nordberg J, Arner E. Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radical Biol Med 2001;31:1287–312.
  • Işık M, Beydemir Ş. AChE mRNA expression as a possible novel biomarker for the diagnosis of coronary artery disease and Alzheimer’s disease, and its association with oxidative stress. Arch Physiol Biochem 2019;1–8.
  • Türkeş C, Demir Y, Beydemir Ş. Anti-diabetic properties of calcium channel blockers: Inhibition effects on aldose reductase enzyme activity. Appl Biochem Biotechnol 2019;189:318–29.
  • Matés JM, Pérez-Gómez C, De Castro IN. Antioxidant enzymes and human diseases. Clin Biochem 1999;32:595–603.
  • Variji A, Shokri Y, Fallahpour S, et al. The combined utility of myeloperoxidase (mpo) and paraoxonase 1 (pon1) as two important HDL-associated enzymes in coronary artery disease: which has a stronger predictive role? Atherosclerosis 2019;280:7–13.
  • Gülçin İ. Antioxidant and antiradical activities of l-carnitine. Life Sci 2006;78:803–11.
  • Necip A, Işık M. Bioactivities of Hypericum perforatum L and Equisetum arvense L fractions obtained with different solvents. Int J Life Sci Biotech 2019;2:221–30.
  • Shah GN, Morofuji Y, Banks WA, et al. High glucose-induced mitochondrial respiration and reactive oxygen species in mouse cerebral pericytes is reversed by pharmacological inhibition of mitochondrial carbonic anhydrases: implications for cerebral microvascular disease in diabetes. Biochem Biophys Res Commun 2013;440:354–8.
  • Bartolini M, Bertucci C, Cavrini V, Andrisano V. Β-amyloid aggregation induced by human acetylcholinesterase: inhibition studies. Biochem Pharm 2003;65:407–16.
  • Işık M. The binding mechanisms and inhibitory effect of intravenous anesthetics on ache in vitro and in vivo: Kinetic analysis and molecular docking. Neurochem Res 2019;44:2147–55.
  • Gülçin İ. Antioxidant activity of caffeic acid (3, 4-dihydroxycinnamic acid). Toxicol 2006;217:213–20.
  • Berchtold NC, Cotman CW. Evolution in the conceptualization of dementia and alzheimer’s disease: Greco-roman period to the 1960s. Neurobiol Aging 1998;19:173–89.
  • Choudhary MI. Bioactive natural products as a potential source of new pharmacophores. A theory of memory. Pure App Chem 2001;73:555–60.
  • Doungsoongnuen S, Worachartcheewan A, Pingaew R, et al. Investigation on biological activities of anthranilic acid sulfonamide analogs. Excli J 2011;10:155.
  • Abbas A, Murtaza S, Tahir MN, et al. Synthesis, antioxidant, enzyme inhibition and DNA binding studies of novel n-benzylated derivatives of sulfonamide. J Mol Struct 2016;1117:269–75.
  • Chandrasekhar M, Prasad GS, Venkataramaiah C, et al. Synthesis, spectral characterization, docking studies and biological activity of urea, thiourea, sulfonamide and carbamate derivatives of imatinib intermediate. Mol Diversity 2019;23:723–16.
  • Siddique M, Saeed AB, Ahmad S, Dogar NA. Synthesis and biological evaluation of hydrazide based sulfonamides. J Sci Innovative Res 2013;2:627–33.
  • Patrick GL. Quantitative structure-activity relationships. An introduction to medicinal chemistry. 2nd ed. New York: Oxford University Press; 2001:258–88.
  • Deng Y, Li B, Zhang T. Bacteria that make a meal of sulfonamide antibiotics: Blind spots and emerging opportunities. Environ Sci Technol 2018;52:3854–68.
  • Khan KM, Ahmad I, Afzal S. Synthesis and biological studies of some new n-substituted derivatives of n-(1, 3-benzodioxol-5-yl)-4-methylbenzenesulfonamide. J Chem Soc Pakistan 2015;37:150–6.
  • Genç Y, Özkanca R, Bekdemir Y. Antimicrobial activity of some sulfonamide derivatives on clinical isolates of Staphylococus aureus. Ann Clin Microbiol Antimicrob 2008;7:17.
  • Capasso C, Supuran CT. Bacterial, fungal and protozoan carbonic anhydrases as drug targets. Expert Opin Ther Targets 2015;19:1689–704.
  • Borne RF, Peden RL, Waters IW, et al. Anti-inflammatory activity of para-substituted n-benzenesulfonyl derivatives of anthranilic acid. J Pharm Sci 1974;63:615–7.
  • Keche AP, Hatnapure GD, Tale RH, et al. A novel pyrimidine derivatives with aryl urea, thiourea and sulfonamide moieties: synthesis, anti-inflammatory and antimicrobial evaluation. Bioorg Med Chem Lett 2012;22:3445–8.
  • Durgun M, Turkmen H, Zengin G, et al. Synthesis, characterization, in vitro cytotoxicity and antimicrobial investigation and evaluation of physicochemical properties of novel 4-(2-methylacetamide) benzenesulfonamide derivatives. Bioorg Chem 2017;70:163–72.
  • Scozzafava A, Owa T, Mastrolorenzo A, Supuran CT. Anticancer and antiviral sulfonamides. Curr Med Chem 2003;10:925–53.
  • (a) Supuran CT. Carbonic anhydrase inhibitors as emerging agents for the treatment and imaging of hypoxic tumors. Expert Opin Investig Drugs 2018;27:963–70. (b) Supuran CT. Advances in structure-based drug discovery of carbonic anhydrase inhibitors. Expert Opin Drug Discov 2017;12:61–88.
  • De Simone G, Vitale RM, Di Fiore A, et al. Carbonic anhydrase inhibitors: hypoxia-activatable sulfonamides incorporating disulfide bonds that target the tumor-associated isoform IX. J Med Chem 2006;49:5544–51.
  • (a) Nocentini A, Supuran CT. Carbonic anhydrase inhibitors as antitumor/antimetastatic agents: a patent review (2008-2018). Expert Opin Ther Pat 2018;28:729–40. (b) Neri D, Supuran CT. Interfering with pH regulation in tumours as a therapeutic strategy. Nat Rev Drug Discov 2011;10:767–77.
  • Koyuncu I, Gonel A, Durgun M, et al. Assessment of the antiproliferative and apoptotic roles of sulfonamide carbonic anhydrase ix inhibitors in hela cancer cell line. J Enzyme Inhib Med Chem 2019;34:75–86.
  • de Clercq E. New developments in anti-hiv chemotherapy. Curr Med Chem 2001;8:1543–72.
  • Moreno-Díaz H, Villalobos-Molina R, Ortiz-Andrade R, et al. Antidiabetic activity of n-(6-substituted-1, 3-benzothiazol-2-yl) benzenesulfonamides. Bioorg Med Chem Lett 2008;18:2871–7.
  • Xanthopoulos D, Kritsi E, Supuran CT, et al. Discovery of HIV type 1 aspartic protease hit compounds through combined computational approaches. Chem Med Chem 2016;11:1646–52.
  • Mann T, Keilin D. Sulfanilamide as a specific inhibitor of carbonic anhydrase. Nature 1940;146:164–5.
  • (a) Nocentini A, Supuran CT. Advances in the structural annotation of human carbonic anhydrases and impact on future drug discovery. Expert Opin Drug Discov 2019;14:1175–97. (b) Supuran CT. Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. Nat Rev Drug Discov 2008;7:168–81.
  • (a) Kausar N, Muratza S, Raza MA, et al. Sulfonamide hybrid schiff bases of anthranilic acid: synthesis, characterization and their biological potential. J Mol Struct 2019;1185:8–20. (b) Carradori S, De Monte C, D’Ascenzio M, et al. Salen and tetrahydrosalen derivatives act as effective inhibitors of the tumor-associated carbonic anhydrase XII—A new scaffold for designing isoform-selective inhibitors. Bioorg Med Chem Lett 2013;23:6759–63.
  • Hirayama N, Taga J, Oshima S, Honjo T. Sulfonamide-type di-Schiff base ligands as chelate extraction reagents for divalent metal cations. Anal Chim Acta 2002;466:295–301.
  • Khan F, Khan S, Athar A. Synthesis, spectral characterization and antibacterial study of a schiff base metal complexes derived from n-[(e)-(5-chloro-2-hydroxyphenyl) methylidene]-4-nitrobenzenesulfonamide. Am Eur J Agric Environ Sci 2015;15:216–20.
  • Oyaizu M. Studies on products of browning reaction: antioxidative activity of products of Browning reaction. Jpn J Nutr 1986;44:307–15.
  • Elmastaş M, Gülçin İ, Beydemir Ş, et al. A study on the in vitro antioxidant activity of juniper (Juniperus communis L.) fruit extracts. Anal Lett 2006;39:47–65.
  • Apak R, Güçlü K, Özyürek M, et al. The cupric ion reducing antioxidant capacity and polyphenolic content of some herbal teas. Int J Food Sci Nut 2006;57:292–304.
  • Isik M, Korkmaz M, Bursal E, et al. Determination of antioxidant properties of Gypsophila bitlisensis bark. Int J Pharmacol 2015;11:366–71.
  • Blois MS. Antioxidant determinations by the use of a stable free radical. Nature 1958;181:1199–200.
  • Işık M, Dikici E, Tohma H, et al. Antioxidant activity and total phenolic/flavonoid contents of Phlomis pungens L. 2017.
  • Re R, Pellegrini N, Proteggente A, et al. Antioxidant activity applying an improved abts radical cation decolorization assay. Free Radical Biol Med 1999;26:1231–7.
  • Topal F, Nar M, Gocer H, et al. Antioxidant activity of taxifolin: an activity–structure relationship. J Enzyme Inhib Med Chem 2016;31:674–83.
  • Topal M, Gocer H, Topal F, et al. Antioxidant, antiradical, and anticholinergic properties of cynarin purified from the illyrian thistle (Onopordum illyricum L.). J Enzyme Inhib Med Chem 2016;31:266–75.
  • Sağlık BN, Çevik UA, Osmaniye D, et al. Synthesis, molecular docking analysis and carbonic anhydrase i-ii inhibitory evaluation of new sulfonamide derivatives. Bioorg Chem 2019;91:103–53.
  • Söyüt H, Beydemir S, Türkeş C. Inhibition effects of gemcitabine hydrochloride, acyclovir, and 5-fluorouracil on human serum paraoxonase-1 (hpon1): in vitro. Open J Biochem 2014;1:15.
  • Akbaba Y, Türkeş C, Polat L. Synthesis and paroxonase activities of novel bromophenols. J Enzyme Inhib Med Chem 2013;28:1073–79.
  • Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage t4. Nature 1970;227:680.
  • Türkeş C, Söyüt H, Beydemir Ş. Effect of calcium channel blockers on paraoxonase-1 (pon1) activity and oxidative stress. Pharm Rep 2014;66:74–80.
  • Türkeş C, Söyüt H. Beydemir   Ş. Human serum paraoxonase-1 (hpon1): In vitro inhibition effects of moxifloxacin hydrochloride, levofloxacin hemihidrate, cefepime hydrochloride, cefotaxime sodium and ceftizoxime sodium. J Enzyme Inhib Med Chem 2015;30:622–28.
  • Gündoğdu S, Türkeş C, Arslan M, et al. New isoindole 1, 3-dione substituted sulfonamides as potent inhibitors of carbonic anhydrase and acetylcholinesterase: design, synthesis, and biological evaluation. ChemistrySelect 2019;4:13347–55.
  • Aslan HE, Demir Y, Özaslan MS, et al. The behavior of some chalcones on acetylcholinesterase and carbonic anhydrase activity. Drug Chem Toxicol 2019;42:634–40.
  • Kaya ED, Erğun B, Demir Y, et al. The in vitro impacts of some plant extracts on carbonic anhydrase i, ii and paraoxonase-1. Hacettepe J Biol Chem 2019;47:51–9.
  • Ellman GL, Courtney KD, Andres V, Jr, Featherstone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharm 1961;7:88–95.
  • Topal F. Inhibition profiles of voriconazole against acetylcholinesterase, α-glycosidase, and human carbonic anhydrase i and ii isoenzymes. J Biochem Mol Toxicol 2019;33:e22385.
  • Işık M, Demir Y, Durgun M, et al. Molecular docking and investigation of 4-(benzylideneamino)-and 4-(benzylamino)-benzenesulfonamide derivatives as potent AChe inhibitors. Chem Papers 2019;1–11.
  • Taslimi P, Kandemir FM, Demir Y, et al. The antidiabetic and anticholinergic effects of chrysin on cyclophosphamide-induced multiple organ toxicity in rats: pharmacological evaluation of some metabolic enzyme activities. J Biochem Mol Toxicol 2019;33:e22313.
  • Demir Y, Işık M, Gülçin İ, Beydemir Ş. Ş. Phenolic compounds inhibit the aldose reductase enzyme from the sheep kidney. J Biochem Mol Toxicol 2017;31:e21936.
  • Türkeş C, Söyüt H, Beydemir Ş. In vitro inhibitory effects of palonosetron hydrochloride, bevacizumab and cyclophosphamide on purified paraoxonase-i (hpon1) from human serum. Environ Toxicol Pharm 2016;42:252–57.
  • Işık M, Beydemir Ş, Demir Y. Benzenesulfonamide derivatives containing imine and amine groups: Inhibition on human paraoxonase and molecular docking studies. Int J Biol Macromol 2020 [in press].
  • Jorgensen WL, Duffy EM. Prediction of drug solubility from Monte Carlo simulations. Bioorg Med Chem Lett 2000;10:1155–58.
  • Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Del Rev 1997;23:3–25.
  • (a) Supuran CT. How many carbonic anhydrase inhibition mechanisms exist?. J Enzyme Inhib Med Chem 2016; 31:345–60. (b) Supuran CT. Carbonic anhydrases and metabolism. Metabolites 2018;8:25. (c) Supuran CT. The management of glaucoma and macular degeneration. Expert Opin Ther Pat. 2019;29:745–47.
  • (a) De Simone G, Supuran CT, (In)organic anions as carbonic anhydrase inhibitors. J Inorg Biochem 2012;111:117–29. (b) Supuran CT, Carbon- versus sulphur-based zinc binding groups for carbonic anhydrase inhibitors? J Enzyme Inhib Med Chem 2018; 33:485–95. (c) Tars K, Vullo D, Kazaks A, et al. Sulfocoumarins (1,2-benzoxathiine-2,2-dioxides): a class of potent and isoform-selective inhibitors of tumor-associated carbonic anhydrases. J Med Chem 2013;56:293–300.
  • Cheung J, Rudolph MJ, Burshteyn F, et al. Structures of human acetylcholinesterase in complex with pharmacologically important ligands. J Med Chem 2012;55:10282–86.
  • Türkeş C. Inhibition effects of phenolic compounds on human serum paraoxonase-1 enzyme. J Inst Sci Tech 2019;9:1013–22.
  • Beydemir Ş, Türkeş C, Yalçın A. Gadolinium-based contrast agents: in vitro paraoxonase 1 inhibition, in silico studies. Drug Chem Toxicol 2019;1–10.
  • Türkeş C, Beydemir Ş, Küfrevioğlu Öİ. In vitro and in silico studies on the toxic effects of antibacterial drugs as human serum paraoxonase 1 inhibitor. Chem Select 2019;4:9731–36.
  • Türkeş C, Arslan M, Demir Y, et al. Synthesis, biological evaluation and in silico studies of novel n-substituted phthalazine sulfonamide compounds as potent carbonic anhydrase and acetylcholinesterase inhibitors. Bioorg Chem 2019;89:103004.
  • Türkeş C. Investigation of potential paraoxonase-i inhibitors by kinetic and molecular docking studies: chemotherapeutic drugs. Protein Pept Lett 2019;26:392–402.
  • Türkeş C. A potential risk factor for paraoxonase 1: In silico and in‐vitro analysis of the biological activity of proton‐pump inhibitors. J Pharm Pharmacol 2019;71:1553–64.
  • Türkeş C, Beydemir Ş. Inhibition of human serum paraoxonase-i with antimycotic drugs: in vitro and in silico studies. Appl Biochem Biotechnol 2020;190:252–69.
  • Durgun M, Turkmen H, Ceruso M, Supuran CT. Synthesis of 4-sulfamoylphenyl-benzylamine derivatives with inhibitory activity against human carbonic anhydrase isoforms I, II, IX and XII. Bioorg Med Chem 2016;24:982–88.
  • Sarikaya B, Ceruso M, Carta F, Supuran CT. Inhibition of carbonic anhydrase isoforms i, ii, ix and xii with novel schiff bases: Identification of selective inhibitors for the tumor-associated isoforms over the cytosolic ones. Bioorg Med Chem 2014;22:5883–90.
  • Ceylan Ü, Durgun M, Türkmen H, et al. Theoretical and experimental investigation of 4-[(2-hydroxy-3-methylbenzylidene) amino] benzenesulfonamide: structural and spectroscopic properties, nbo, nlo and npa analysis. J Mol Struct 2015;1089:222–32.
  • Durgun M, Turkmen H, Ceruso M, Supuran CT. Synthesis of schiff base derivatives of 4-(2-aminoethyl)-benzenesulfonamide with inhibitory activity against carbonic anhydrase isoforms i, ii, ix and xii. Bioorg Med Chem Lett 2015;25:2377–81.
  • Gulçin İ, Abbasova M, Taslimi P, et al. Synthesis and biological evaluation of aminomethyl and alkoxymethyl derivatives as carbonic anhydrase, acetylcholinesterase and butyrylcholinesterase inhibitors. J Enzyme Inhib Med Chem 2017;32:1174–82.
  • Huyut Z, Beydemir Ş, Gülçin İ. Inhibitory effects of some phenolic compounds on the activities of carbonic anhydrase: from in vivo to ex vivo. J Enzyme Inhib Med Chem 2016;31:1234–40.
  • (a) Genç H, Kalin R, Köksal Z, et al. Discovery of potent carbonic anhydrase and acetylcholinesterase inhibitors: 2-aminoindan β-lactam derivatives. Int J Mol Sci 2016;17:1736. (b) Köhler K, Hillebrecht A, Schulze Wischeler J, et al. Saccharin inhibits carbonic anhydrases: possible explanation for its unpleasant metallic aftertaste. Angew Chem Int Ed Engl 2007;46:7697–99.
  • Dastan T, Kocyigit UM, Durna Dastan S, et al. Investigation of acetylcholinesterase and mammalian DNA topoisomerases, carbonic anhydrase inhibition profiles, and cytotoxic activity of novel bis (α‐aminoalkyl) phosphinic acid derivatives against human breast cancer. J Biochem Mol Toxicol 2017;31:e21971.
  • Taslimi P, Akıncıoglu H, Gülçin İ. Synephrine and phenylephrine act as α‐amylase, α‐glycosidase, acetylcholinesterase, butyrylcholinesterase, and carbonic anhydrase enzymes inhibitors. J Biochem Mol Toxicol 2017;31:e21973.
  • Afanas’ ev IB, Dcrozhko AI, Brodskii AV, et al. Chelating and free radical scavenging mechanisms of inhibitory action of rutin and quercetin in lipid peroxidation. Biochem Pharmacol 1989;38:1763–69.
  • Amarowicz R, Pegg RB, Rahimi-Moghaddam P, et al. Free-radical scavenging capacity and antioxidant activity of selected plant species from the Canadian prairies. Food Chem 2004;84:551–62.
  • Rice-Evans CA, Miller NJ, Paganga G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Biol Med 1996;20:933–56.
  • Gülçin I. Measurement of antioxidant ability of melatonin and serotonin by the dmpd and cuprac methods as trolox equivalent. J Enzyme Inhib Med Chem 2008;23:871–76.