1,334
Views
6
CrossRef citations to date
0
Altmetric
Research Paper

Synthesis and carbonic anhydrase activating properties of a series of 2-amino-imidazolines structurally related to clonidine1

, , , ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 1003-1010 | Received 14 Mar 2020, Accepted 26 Mar 2020, Published online: 27 Apr 2020

References

  • Supuran CT, De Simone G, Carbonic anhydrases: an overview. In: Claudiu T, Supuran GDS, eds. Carbonic anhydrases as biocatalysts – from theory to medical and industrial applications. Amsterdam: Elsevier; 2015.
  • Jensen EL, Clement R, Kosta A, et al. A new widespread subclass of carbonic anhydrase in marine phytoplankton. ISME J 2019;13:2094–106.
  • Bozdag M, Altamimi ASA, Vullo D, et al. State of the art on carbonic anhydrase modulators for biomedical purposes. Curr Med Chem 2019;26:2558–73.
  • Supuran CT. Carbonic anhydrase activators. Future Med Chem 2018;10:561–73.
  • Sun MK, Alkon DL. Carbonic anhydrase gating of attention: memory therapy and enhancement. Trends Pharmacol Sci 2002;23:83–9.
  • Canto de Souza L, Provensi G, Vullo D, et al. Carbonic anhydrase activation enhances object recognition memory in mice through phosphorylation of the extracellular signal-regulated kinase in the cortex and the hippocampus. Neuropharmacology 2017;118:148–56.
  • Temperini C, Scozzafava A, Supuran CT. Carbonic anhydrase activators and the drug design. Curr Pharm. Des 2008;14:708–15.
  • Akocak S, Supuran CT. Activation of α-, β-, γ- δ-, ζ- and η- class of carbonic anhydrases with amines and amino acids: a review. J Enz Inhib Med Chem 2019;34:1652–9.
  • Supuran CT, Vullo D, Manole G, et al. Designing of novel carbonic anhydrase inhibitors and activators. Curr Med Chem Cardiovasc Hematol Agents 2004;2:49–68.
  • Akocak S, Lolak N, Bua S, et al. α-Carbonic anhydrases are strongly activated by spinaceamine derivatives. Bioorg Med Chem 2019;27:800–4.
  • Provensi G, Carta F, Nocentini A, et al. A new kid on the block? Carbonic anhydrases as possible new targets in Alzheimer’s disease. Int J Mol Sci 2019;20:4724.
  • Wang X, Schröder HC, Schlossmacher U, et al. Modulation of the initial mineralization process of SaOS-2 cells by carbonic anhydrase activators and polyphosphate. Calcified Tissue Int 2014;94:495–509.
  • Capasso C, Supuran CT, Targeting carbonic anhydrases in biotechnology. In: Capasso C, Supuran CT eds. Targeting carbonic anhydrases. Future Medicine; 2014:158–69.
  • Briganti F, Mangani S, Orioli P, et al. Carbonic anhydrase activators: X-ray crystallographic and spectroscopic investigations for the interaction of isozymes I and II with histamine. Biochemistry 1997;36:10384–92.
  • Supuran CT, Barboiu M, Luca C, et al. Carbonic anhydrase activators. Part 14. Syntheses of mono and bis pyridinium salt derivatives of 2-amino-5-(2-aminoethyl)- and 2-amino-5-(3-aminopropyl)-1,3,4-thiadiazole and their interaction with isozyme II. Eur J Med Chem 1996;31:597–606.
  • Bousquet P, Hudson A, García-Sevilla JA, Li J-X. Imidazoline receptor system: the past, the present, and the future. Pharmacol Rev 2020;72:50–79.
  • Romanelli MN, Sartiani L, Masi A, et al. HCN channels modulators: the need for selectivity. Curr Top Med Chem 2016;16:1764–91.
  • Price TO, Sheibani N, Shah GN. Regulation of high glucose-induced apoptosis of brain pericytes by mitochondrial CA VA: a specific target for prevention of diabetic cerebrovascular pathology. Biochim Biophys Acta 2017;1863:929–35.
  • Di Fiore A, Monti DM, Scaloni A, et al. Protective role of carbonic anhydrases III and VII in cellular defense mechanisms upon redox unbalance. Oxid Med Cell Longev 2018;2018: 2018306.
  • José O, Torres-Rodríguez P, Forero-Quintero LS, et al. Carbonic anhydrases and their functional differences in human and mouse sperm physiology. Biochem Biophys Res Commun 2015;468:713–8.
  • Karim K, Giribabu N, Muniandy S, Salleh N. Estrogen and progesterone differentially regulate carbonic anhydrase II, III, IX, XII, and XIII in ovariectomized rat uteri. Syst Biol Reprod Med 2016;62:57–68.
  • Marshall AG, Hendrickson CL. High-resolution mass spectrometers. Ann Rev Anal Chem 2008;1:579–99.
  • Aoyagi N, Endo T. Synthesis of five- and six-membered cyclic guanidines by guanylation with isothiouronium iodides and amines under mild conditions. Synth Commun 2017;47: 442–8.
  • McKay AF, Kreling ME. Nitration of 1-substituted-2-iminoimidazolidines. J Org Chem 1957;22:1581–3.
  • Tronche P, Amelot A, Bayard J, Laroussinie C. Synthesis of some N-substituted 2-aminoimidazolines. Ann Pharm Fr 1960; 18:726–35.
  • Genc M, Servi S. Microwave-induced synthesis of 2-aminoimidazolines under neat conditions. Synth Commun 2009;39:3263–77.
  • Bucio-Cano A, Reyes-Arellano A, Correa-Basurto J, et al. Targeting quorum sensing by designing azoline derivatives to inhibit the N-hexanoyl homoserine lactone-receptor CviR: synthesis as well as biological and theoretical evaluations. Bioorg Med Chem 2015;23:7565–77.
  • Heinelt U, Lang HJ. Process for synthesizing heterocyclic compounds, Patent US2004/0242560 A1.
  • Tilley JW, Levitan P, Kierstead RW, Cohen M. Antihypertensive (2-aminoethyl)thiourea derivatives. 1. J Med Chem 1980;23:1387–92.
  • Gómez-SanJuan A, Botija JM, Méndez A, et al. C-N bond forming reactions in the synthesis of substituted 2-aminoimidazole derivatives. Arkivoc 2014;44–56.
  • Aspinall SR, Bianco EJ. A synthesis of 2-alkylamino-4,5-dihydroimidazoles. J Am Chem Soc 1951;73:602–3.
  • Khalifah RG. The carbon dioxide hydration activity of carbonic anhydrase. I. Stop-flow kinetic studies on the native human isoenzymes B and C. J Biol Chem 1971;246:2561–73.
  • Temperini C, Scozzafava A, Vullo D, Supuran CT. Carbonic anhydrase activators. Activation of isozymes I, II, IV, VA, VII, and XIV with L- and D-histidine and crystallographic analysis of their adducts with isoform II: engineering proton-transfer processes within the active site of an enzyme. Chem Eur J 2006;12:7057–66.
  • Akocak S, Lolak N, Vullo D, et al. Synthesis and biological evaluation of histamine Schiff bases as carbonic anhydrase I, II, IV, VII, and IX activators. J Enz Inhib Med Chem 2017;32:1305–12.
  • Akocak S, Lolak N, Bua S, et al. Activation of human α-carbonic anhydrase isoforms I, II, IV and VII with bis-histamine schiff bases and bis-spinaceamine substituted derivatives. J Enz Inhib Med Chem 2019;34:1193–8.
  • Angeli A, Del Prete S, Osman SM, et al. Activation studies with amines and amino acids of the β-carbonic anhydrase encoded by the Rv3273 gene from the pathogenic bacterium Mycobacterium tuberculosis. J Enz Inhib Med Chem 2018;33:364–9.
  • Angeli A, Alasmary FAS, Del Prete S, et al. The first activation study of a δ-carbonic anhydrase: TweCAδ from the diatom Thalassiosira weissflogii is effectively activated by amines and amino acids. J Enz Inhib Med Chem 2018;33:680–5.
  • Angeli A, Buonanno M, Donald WA, et al. The zinc – but not cadmium – containing ζ-carbonic from the diatom Thalassiosira weissflogii is potently activated by amines and amino acids. Bioorg Chem 2018;80:261–5.
  • Vistoli G, Aldini G, Fumagalli L, et al. Activation effects of carnosine- and histidine-containing dipeptides on human carbonic anhydrases: a comprehensive study. Int J Mol Sci 2020;21:1761.
  • Nguyen GTH, Tran TN, Podgorski MN, et al. Nanoscale ion emitters in native mass spectrometry for measuring ligand–protein binding affinities. ACS Central Sci 2019;5:308–18.