1,288
Views
3
CrossRef citations to date
0
Altmetric
Research Paper

A study of Rose Bengal against a 2-keto-3-deoxy-d-manno-octulosonate cytidylyltransferase as an antibiotic candidate

, , & ORCID Icon
Pages 1414-1421 | Received 08 Jan 2020, Accepted 30 Mar 2020, Published online: 26 Jun 2020

References

  • Smyth KM, Marchant A. Conservation of the 2-keto-3-deoxy-manno-octulosonic acid (Kdo) biosynthesis pathway between plants and bacteria. Carbohydr Res 2013;380:70–5.
  • Mamat U, Schmidt H, Munoz E, et al. WaaA of the hyperthermophilic bacterium Aquifex aeolicus is a monofunctional 3-deoxy-d-manno-oct-2-ulosonic acid transferase involved in lipopolysaccharide biosynthesis. J Biol Chem 2009;284:22248–62.
  • Hove-Jensen B, Maigaard M. Escherichia coli rpiA gene encoding ribose phosphate isomerase A. J Bacteriol 1993;175:5628–35.
  • Meredith TC, Woodard RW. Escherichia coli YrbH is a d-arabinose 5-phosphate isomerase. J Biol Chem 2003;278:32771–7.
  • Radaev S, Dastidar P, Patel M, et al. Structure and mechanism of 3-deoxy-d-manno-octulosonate 8-phosphate synthase. J Biol Chem 2000;275:9476–84.
  • Park J, Lee D, Kim MS, et al. A preliminary X-ray study of 3-deoxy-d-manno-oct-2-ulosonic acid 8-phosphate phosphatase (YrbI) from Burkholderia pseudomallei. Acta Crystallogr F Struct Biol Commun 2015;71:790–3.
  • Belunis CJ, Raetz CR. Biosynthesis of endotoxins. Purification and catalytic properties of 3-deoxy-d-manno-octulosonic acid transferase from Escherichia coli. J Biol Chem 1992;267:9988–97.
  • Hammond SM, Claesson A, Jansson A, et al. A new class of synthetic antibacterials acting on lipopolysaccharide biosynthesis. Nature 1987;327:730–2.
  • Goldman R, Kohlbrenner W, Lartey P, Pernet A. Antibacterial agents specifically inhibiting lipopolysaccharide synthesis. Nature 1987;329:162–4.
  • Claesson A, Jansson AM, Pring BG, et al. Design and synthesis of peptide derivatives of a 3-deoxy-d-manno-2-octulosonic acid (KDO) analogue as novel antibacterial agents acting upon lipopolysaccharide biosynthesis. J Med Chem 1987;30:2309–13.
  • Rick D, Osborn MJ. Isolation of a mutant of Salmonella typhimurium dependent on d-arabinose-5-phosphate for growth and synthesis of 3-deoxy-d-mannoctulosonate (ketodeoxyoctonate). Proc Natl Acad Sci USA 1972;69:3756–60.
  • Cheng AC, Currie BJ. Melioidosis: epidemiology, pathophysiology, and management. Clin Microbiol Rev 2005;18:383–416.
  • Limmathurotsakul D, Peacock SJ. Melioidosis: a clinical overview. Brit Med Bull 2011;99:125–39.
  • Peacock SJ. Melioidosis. Curr Opin Infect Dis 2006;19:421–8.
  • Wiersinga WJ, Currie BJ, Peacock SJ. Melioidosis. N Engl J Med 2012;367:1035–44.
  • Bartley PP, Pender MP, Woods ML 2nd, Walker D, et al. Spinal cord disease due to melioidosis. Trans R Soc Trop Med Hyg 1999;93:175–6.
  • Caldera AS, Kumanan T, Corea E. A rare cause of septic arthritis: melioidosis. Trop Doct 2013;43:164–6.
  • Jane L, Crowe A, Daffy J, Gock H. Burkholderia pseudomallei osteomyelitis: an unusual cause of fever in a returned traveller. Aust Med J 2012;5:141–3.
  • McLeod C, Morris PS, Bauert PA, et al. Clinical presentation and medical management of melioidosis in children: a 24-year prospective study in the Northern Territory of Australia and review of the literature. Clin Infect Dis 2015;60:21–6.
  • Ngamdee W, Tandhavanant S, Wikraiphat C, et al. Competition between Burkholderia pseudomallei and B. thailandensis. BMC Microbiol 2015;15:56.
  • Glass MB, Gee JE, Steigerwalt AG, et al. Pneumonia and septicemia caused by Burkholderia thailandensis in the United States. J Clin Microbiol 2006;44:4601–4.
  • Lertpatanasuwan N, Sermsri K, Petkaseam A, et al. Arabinose-positive Burkholderia pseudomallei infection in humans: case report. Clin Infect Dis 1999;28:927–8.
  • Lyczak JB, Cannon CL, Pier GB. Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist. Microbes Infect 2000;2:1051–60.
  • Franzetti F, Cernuschi M, Esposito R, Moroni M. Pseudomonas infections in patients with AIDS and AIDS-related complex. J Intern Med 1992;231:437–43.
  • Kielhofner M, Atmar RL, Hamill RJ, Musher DM. Life-threatening Pseudomonas aeruginosa infections in patients with human immunodeficiency virus infection. Clin Infect Dis 1992;14:403–11.
  • Bendig JW, Kyle PW, Giangrande PL, et al. Two neutropenic patients with multiple resistant Pseudomonas aeruginosa septicaemia treated with ciprofloxacin. J R Soc Med 1987;80:316–7.
  • Ruiz-Garbajosa P, Cantón R. Epidemiology of antibiotic resistance in Pseudomonas aeruginosa. Implications for empiric and definitive therapy. Rev Esp Quimioter 2017;30:8–12.
  • Boucher HW, Talbot GH, Bradley JS, et al. Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin Infect Dis 2009;48:1–12.
  • Michael CA, Dominey-Howes D, Labbate M. The antimicrobial resistance crisis: causes, consequences, and management. Front Public Health 2014;2:145.
  • Yi H, Kim K, Cho KH, et al. Substrate spectrum extension of PenA in Burkholderia thailandensis with a single amino acid deletion, Glu168del. Antimicrob Agents Chemother 2012;56:4005–8.
  • Sha S, Zhou Y, Xin Y, Ma Y. Development of a colorimetric assay and kinetic analysis for Mycobacterium tuberculosis d-glucose-1-phosphate thymidylyltransferase. J Biomol Screen 2012;17:252–7.
  • Kim S, Jo S, Kim M-S, Shin DH. A study of a potent inhibitor against a GDP-6-deoxy-α-d-manno-heptose biosynthesis pathway as antibiotic candidates. Microb Drug Resist 2019; ahead of print.
  • Niyamat IB, Suhail AARS, Sandesh RJ, Habib MP. Rose Bengal sensitized niobium pentaoxide photoanode for dye sensitized solar cell application. AIP Conference Proceedings; 2017;1832:040022.
  • Sherman W, Day T, Jacobson MP, et al. Novel procedure for modeling ligand/receptor induced fit effects. J Med Chem 2006;49:534–53.
  • Jacobson MP, Pincus DL, Rapp CS, et al. A hierarchical approach to all-atom protein loop prediction. Proteins 2004;55:351–67.
  • Friesner RA, Murphy RB, Repasky MP, et al. Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein–ligand complexes. J Med Chem 2006;49:6177–96.
  • Waterhouse AM, Procter JB, Martin DMA, et al. Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 2009;25:1189–91.
  • Kim J. The use of vital dyes in corneal disease. Curr Opin Ophthalmol 2000;11:241–7.
  • Nakonechny F, Barel M, David A, et al. Dark antibacterial activity of Rose Bengal. Int J Mol Sci 2019;20:3196.
  • Ilizirov Y, Formanovsky A, Mikhura I, et al. Effect of photodynamic antibacterial chemotherapy combined with antibiotics on Gram-positive and Gram-negative bacteria. Molecules 2018;23:3152.
  • Schäfer M, Schmitz C, Facius R, et al. Systematic study of parameters influencing the action of Rose Bengal with visible light on bacterial cells: comparison between the biological effect and singlet-oxygen production. Photochem Photobiol 2000;71:514–23.
  • Nisnevitch M, Nakonechny F, Nitzan Y. Photodynamic antimicrobial chemotherapy by liposome-encapsulated water-soluble photosensitizers. Bioorg Khim 2010;36:396–402.
  • Nitzan Y, Nisnevitch M. Special features of Gram-positive bacterial eradication by photosensitizers. Recent Pat Antiinfect Drug Discov 2013;8:88–99.
  • Wu FY, Wu CW. Rose Bengal. Inhibitor of ribonucleic acid chain elongation. Biochemistry 1973;12:4343–8.
  • Thompson JF, Hersey P, Wachter E. Chemoablation of metastatic melanoma using intralesional Rose Bengal. Melanoma Res 2008;18:405–11.
  • Koevary SB. Selective toxicity of Rose Bengal to ovarian cancer cells in vitro. Int J Physiol Pathophysiol Pharmacol 2012;4:99–107.
  • Fung DYC, Miller RD. Effect of dyes on bacterial growth. Appl Environ Microbiol 1973;25:793–9.
  • Koufen P, Zeidler U, Stark G. Photodynamic inactivation of ion channels formed by the polyene antibiotic amphotericin B in lipid membranes. J Photochem Photobiol 1997;38:129–35.
  • M-Ali HA, Mohammad AS, Majed MM, et al. Modeling the effect of Rose Bengal on growth and decay patterns of Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus. IOP Conf Ser Mater Sci Eng 2018;305:012004.
  • Nakonieczna J, Wolnikowska K, Ogonowska P, et al. Rose Bengal-mediated photoinactivation of multidrug resistant Pseudomonas aeruginosa is enhanced in the presence of antimicrobial peptides. Front Microbiol 2018;9:1949.
  • Olaitan AO, Morand S, Rolain JM. Mechanisms of polymyxin resistance: acquired and intrinsic resistance in bacteria. Front Microbiol 2014;5:643.
  • Norbeck DW, Rosenbrook W, Kramer JB, et al. A novel prodrug of an impermeant inhibitor of 3-deoxy-d-manno-2-octulosonate cytidylyltransferase has antibacterial activity. J Med Chem 1989;32:625–9.
  • Goldman RC, Capobianco JO, Doran CC, Matthysse AG. Inhibition of lipopolysaccharide synthesis in Agrobacterium tumefaciens and Aeromonas salmonicida. J Gen Microbiol 1992;138:1527–33.