1,703
Views
10
CrossRef citations to date
0
Altmetric
Review Article

Recent progress in the development of steroid sulphatase inhibitors – examples of the novel and most promising compounds from the last decade

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 1163-1184 | Received 13 Mar 2020, Accepted 16 Apr 2020, Published online: 04 May 2020

References

  • IARC: CANCER FACT SHEETS [Internet]. Lyon (France): International Agency for Research on Cancer [cited 2019 July 16]. Available from: https://gco.iarc.fr/today/fact-sheets-cancers.
  • NCI: Cancer Statistics [Internet]. Bethesda (MD): National Cancer Institute [cited 2019 July 16]. Available from: https://www.cancer.gov/about-cancer/understanding/statistics.
  • Pasqualini JR. The selective estrogen enzyme modulators in breast cancer: a review. Biochim Biophys Acta 2004; 1654:123–43.
  • Poirier D. Recent patents on new steroid agents targeting the steroidogenesis for endocrine cancer treatments. Recent Pat Endocr Metab Immune Drug Discov 2015;9:15–23.
  • Saha T, Makar S, Swetha R, et al. Estrogen signaling: an emanating therapeutic target for breast cancer treatment. Eur J Med Chem 2019;177:116–43.
  • Shah R, Singh J, Singh D, et al. Sulfatase inhibitors for recidivist breast cancer treatment: a chemical review. Eur J Med Chem 2016;114:170–90.
  • Foster PA, Chander SK, Newman SP, et al. A new therapeutic strategy against hormone-dependent breast cancer: the preclinical development of a dual aromatase and sulfatase inhibitor. Clin Cancer Res 2008;14:6469–77.
  • Dixon JM. Endocrine resistance in breast cancer. New J Sci 2014;2014:1–27.
  • Reinert T, Saad ED, Barrios CH, et al. Clinical implications of ESR1 mutations in hormone receptor-positive advanced breast cancer. Front Oncol 2017;7:26.
  • Augusto TV, Correia-da-Silva G, Rodrigues CMP, et al. Acquired resistance to aromatase inhibitors: where we stand. ! Endocr Relat Cancer 2018;25:R283–301.
  • Mueller JW, Gilligan LC, Idkowiak J, et al. The regulation of steroid action by sulfation and desulfation. Endocr Rev 2015;36:526–63.
  • Foster PA, Reed MJ, Purohit A. Recent developments of steroid sulfatase inhibitors as anti-cancer agents. Anti-Cancer Agents Med Chem 2008;8:732–8.
  • Smith HJ, Simons C, Development of enzyme inhibitors as drugs. In: Smith HJ, Simons C, eds. Enzymes and their inhibition: drug development. London: CRC Press; 2005;171–250.
  • Reed MJ, Purohit A, Woo LWL, et al. Steroid sulfatase: molecular biology, regulation and inhibition. Endocr Rev 2005;26:171–202.
  • Miki Y, Nakata T, Suzuki T, et al. Systemic distribution of steroid sulfatase and estrogen sulfotransferaze in human adult and fetal tissues. J Clin Endocrinol Metabol 2002;87:5760–8.
  • Hanson SR, Best MD, Wong CH. Sulfatases: structure, mechanism, biological activity, inhibition, and synthetic utility. Angew Chem Ind Ed 2004;43:5736–63.
  • Thomas MP, Potter B. The structure biology of estrogen metabolites. J Steroid Biochem Mol Biol 2013;137:27–49.
  • Purohit A, Foster PA. Steroid sulfatase inhibitors for estrogen- and androgen-dependent cancers. J Endocrinol 2012;212:99–110.
  • Hernandez-Guzman FG, Higashiyama T, Pangborn W, et al. Structure of human estrone sulfatase suggests functional roles of membrane association. J Biol Chem 2003;278:22989–97.
  • Ghosh D. Human sulfatases: a structural perspective to catalysis. Cell Mol Life Sci 2007;64:2013–22.
  • Selmer T, Hallmann A, Schmidt B, et al. The evolutionary conservation of a novel protein modification, the conversion of cysteine o serine-semialdehyde in arylsulfatase from Volvox carteri. Eur J Biochem 1996;238:341–5.
  • Maltais R, Poirier D. Steroid sulfatase inhibitors: a review covering the promising 2000–2010 decade. Steroids 2011;76:929–48.
  • Mostafa YA, Taylor SD. Steroid derivatives as inhibitors of steroid sulfatase. J Steroid Biochem Mol Biol 2013;137:183–98.
  • Woo LWL, Purohit A, Potter B. Development of steroid sulfatase inhibitors. Mol Cell Endocrinol 2011;340:176–85.
  • Geisler J, Sasano H, Chen S, et al. Steroid sulfatase inhibitors: promising new tools for breast cancer therapy? J Steroid Biochem Mol Biol 2011;125:39–45.
  • Potter B, SULFATION P. Steroid sulphatase inhibition via aryl sulphamates: clinical progress, mechanism and future prospects. J Mol Endocrinol 2018;61:T233–52.
  • Thomas MP, Potter B. Discovery and development of the aryl O-sulfamate pharmacophore for oncology and women’s health. J Med Chem 2015;58:7634–58.
  • Rizner TL. The important roles of steroid sulfatase and sulfotransferases in gynecological diseases. Front Pharmacol 2016;7:1–16.
  • Sadozai H. Steroid sulfatase inhibitors: promising new therapy for breast cancer. J Pak Med Assoc 2013;63:509–15.
  • Howarth NM, Cooper G, Purohit A, et al. Phosphonates and thiophosphonates as sulfate surrogates: synthesis of estrone-3-methylthiophosphonates, a potent inhibitor of estrone sulfatase. Bioorg Med Chem Lett 1993;3:313–8.
  • Duncan L, Purohit A, Howarth NM, et al. Inhibition of estrone sulfatase activity by estrone-3-methylthiophosphonate: a potential therapeutic agent in breast cancer. Cancer Res 1993;53:298–303.
  • Howarth NM, Purohit A, Reed MJ, et al. Estrone sulfamates: potent inhibitors of estrone sulfatase with therapeutic potential. J Med Chem 1994;37:219–21.
  • Purohit A, Williams GJ, Howarth NM, et al. Inactivation of sulfatase by an active site-directed inhibitor, estrone-3-O-sulfamate. Biochemistry 1995;34:11508–14.
  • Elger W, Barth A, Hedden A, et al. Estrogen sulfamates: a new approach to oral estrogen therapy. Reprod Fertil Dev 2001;13:297–305.
  • Hidalgo Aragones MI, Purohit A, Parish D, et al. Pharmacokinetics of oestrone-3-O-sulphamate. J Steroid Biochem Mol Biol 1996;58:611–7.
  • Elger W, Schwarz S, Hedden A, et al. Sulfamates of various estrogens are prodrugs with increased systemic and reduced hepatic estrogenicity at oral application. J Steroid Biochem Mol Biol 1995;55:395–403.
  • Pohl O, Bestel E, Gotteland JP. Synergistic effects of E2MATE and norethindrone acetate on steroid sulfatase inhibition: a randomized phase I proof-of-principle clinical study in women of reproductive age. Reprod Sci 2014;21:1256–65.
  • Colette S, Defrère S, Lousse JC, et al. Inhibition of steroid sulfatase decreases endometriosis in an in vivo murine model. Hum Reprod 2011;26:1362–70.
  • Woo LWL, Leblond B, Purohit A, et al. Synthesis and evaluation of analogues of estrone-3-O-sulfamate as potent steroid sulfatase inhibitors. Bioorg Med Chem 2012;20:2506–19.
  • Mostafa YA, Taylor SD. 17β-arylsulfonamides of 17β-aminoestra-1,3,5(10)-trien-3-ol as highly potent inhibitors of steroid sulfatase. Bioorg Med Chem 2012;20:1535–44.
  • Mostafa YA, Kralt B, Rao PPN, et al. A-ring substituted 17β-arylsulfonamides of 17β-aminoestra-1,3,4,(10)-trien-3-ol as highly potent reversible inhibitors of steroid sulfatase. Bioorg Med Chem 2015;23:5681–92.
  • Grienke U, Kaserer T, Kirchweger B, et al. Steroid sulfatase inhibiting lanostane triterpenes – Structure activity relationship and in silico insights. Bioorg Chem 2020;95:103495.
  • Maltais R, Djiemeny AN, Roy J, et al. Design and synthesis of dansyl-labeled inhibitors of steroid sulfatase for optical imaging. Bioorg Med Chem 2020;28:115368.
  • Fournier D, Poirier D. Chemical synthesis and evaluation of 17alpha-alkylated derivatives of estradiol as inhibitors of steroid sulfatase. Eur J Med Chem 2011;46:4227–37.
  • Boivin RP, Luu-The V, Lachance R, et al. Structure-activity relationships of 17alpha-derivatives of estradiol as inhibitors of steroid sulfatase. J Med Chem 2000;43:4465–78.
  • Purohit A, Woo LWL, Singh A, et al. In vivo activity of 4-methylcoumarin-7-O-sulfamate, a nonsteroidal, nonestrogenic steroid sulfatase inhibitor. Canc Res 1996;56:4950–5.
  • Woo LWL, Howarth NM, Purohit A, et al. Steroidal and nonsteroidal sulfamates as potent inhibitors of steroid sulfatase. J Med Chem 1998;41:1068–83.
  • Malini B, Purohit A, Ganeshapillai D, et al. Inhibition of steroid sulphatase activity by tricyclic coumarin sulphamates. J Steroid Biochem Mol Biol 2000;75:253–8.
  • Woo LWL, Purohit A, Malini B, et al. Potent active site-directed inhibition of steroid sulphatase by tricyclic coumarin-based sulphamates. Chem Biol 2000;7:773–91.
  • Woo LWL, Ganeshapillai D, Thomas MP, et al. Structure-activity relationship for the first-in-class clinical steroid sulfatase inhibitor Irosustat (STX64, BN83495). Chem Med Chem 2011;6:2019–34.
  • Parra-Guillen ZP, Cendrós Carreras JM, Peraire C, et al. Population pharmacokinetic modelling of Irosustat in postmenopausal women with Oestrogen-receptor positive breast cancer incorporating non-linear red blood cell uptake. Pharm Res 2015;32:1493–504.
  • Coombes RC, Cardoso F, Nicolas I, et al. A phase I dose escalation study to determine the optimal biological dose of irosustat, an oral steroid sulfatase inhibitor, in postmenopausal women with estrogen receptor-positive breast cancer. Breast Cancer Res Treat 2013;140:73–82.
  • Stanway SJ, Purohit A, Woo LWL, et al. Phase I study of STX64 (667 Coumate) in breast cancer patients: the first study of a steroid sulfatase inhibitor. Clin Cancer Res 2006;12:1585–92.
  • Palmieri C, Januszewski A, Stanway S, et al. Irosustat: a first-generation steroid sulfatase inhibitor in breast cancer. Expert Rev Anticancer Ther 2011;11:179–83.
  • Palmieri C, Stein RC, Liu X, et al. IRIS study: a phase II study of the steroid sulfatase inhibitor Irosustat when added to an aromatase inhibitor in ER-positive breast cancer patients. Breast Cancer Res Treat 2017;165:343–53.
  • Palmieri C, Stein RC, Liu X, et al. A phase II study to assess the safety and efficacy of the steroid sulfatase inhibitor Irosustat when added to an aromatase inhibitor in ER positive locally advanced or metastatic breast cancer patient (IRIS) – trial results. J Clin Oncol 2016;34:549.
  • Palmieri C, Szydlo R, Miller M, et al. IPET study: an FLT-PET window study to assess the activity of the steroid sulfatase inhibitor irosustat in early breast cancer. Breast Cancer Res Treat 2017;166:527–39.
  • Pautier P, Vergote I, Joly F, et al. A phase 2, randomized, open-label study of Irosustat versus megestrol acetate in advanced endometrial cancer. Int J Gynecol Cancer 2017;27:258–66.
  • Ganeshapillai D, Woo LWL, Thomas MP, et al. C-3- and C-4-substituted bicyclic coumarin sulfamates as potent steroid sulfatase inhibitors. ACS Omega 2018;3:10748–72.
  • Hng Y, Lin MH, Lin TS, et al. Design and synthesis of 3-benzylaminocoumarin-7-O-sulfamate derivatives as steroid sulfatase inhibitors. Bioorg Chem 2020;96:103618.
  • Demkowicz S, Daśko M, Kozak W, et al. Synthesis and biological evaluation of fluorinated 3-phenylcoumarin-7-O-sulfamate derivative as steroid sulfatase inhibitors. Chem Biol Drug Des 2016;87:233–8.
  • Daśko M, Przybyłowska M, Rachon J, et al. Synthesis and biological evaluation of fluorinated N-benzoyl and N-phenylacetoyl derivatives of 3-(4-aminophenyl)-coumarin-7-O-sulfamate as steroid sulfatase inhibitors. Eur J Med Chem 2017;128:79–87.
  • Daśko M, Rachon J, Masłyk M, et al. Synthesis and biological evaluation of N-acylated tyramine sulfamates containing C-F bonds as steroid sulfatase inhibitors. Chem Biol Drug Des 2017; 90:156–61.
  • Daśko M, Demkowicz S, Rachon J, et al. New potent STS inhibitors based on fluorinated 4-(1-phenyl-1H-[1,2,3]triazol-4-yl)-phenyl sulfamates. J Asian Nat Prod Res 2019. doi: 10.1080/10286020.2019.1680642.
  • Kajita D, Nakamura M, Matsumoto Y, et al. Design and synthesis of silicon-containing steroid sulfatase inhibitors possessing pro-estrogen antagonistic character. Bioorg Med Chem 2014;22:2244–52.
  • El-Gamal MI, Semreen MH, Foster PA, et al. Design, synthesis, and biological evaluation of new arylamide derivatives possessing sulfonate or sulfamate moieties as steroid sulfatase enzyme inhibitors. Bioorg Med Chem 2016;24:2762–7.
  • Moi D, Foster PA, Rimmer LG, et al. Synthesis and in vitro evaluation of piperazinyl-ureido sulfamates as steroid sulfatase inhibitors. Eur J Med Chem 2019;182:111614.
  • Zhou Y, Wang J, Gu Z, et al. Next generation of fluorine-containing pharmaceuticals, compounds currently in phase II-III clinical trials of major pharmaceutical companies: new structural trends and therapeutic areas. Chem Rev 2016;116:422–518.
  • Kitchen DB, Decornez H, Furr JR, et al. Docking and scoring in virtual screening for drug discovery: methods and applications. Nat Rev Drug Discov 2004;3:935–49.
  • Jagiello K, Sosnowska A, Kar S, et al. Geometry optimization of steroid sulfatase inhibitors – the influence on the free binding energy with STS. Struct Chem 2017;28:1017–32.
  • Yue XH, Tong JQ, Wang ZJ, et al. Steroid sulfatase inhibitor DU-14 protects spatial memory and synaptic plasticity from disruption by amyloid β protein in male rats. Horm Behav 2016;83:83–92.
  • Li PK, Milano S, Kluth L, et al. Synthesis and sulfatase inhibitory activities of non-steroidal estrone sulfatase inhibitors. J Steroid Biochem Mol Biol 1996;59:41–48.
  • Selcer KW, Hegde PV, Li PK. Inhibition of estrone sulfatase and proliferation of human breast cancer cells by nonsteroidal (p-O-sulfamoyl)-N-alkanoyl tyramines. Cancer Res 1997;57:702–7.
  • Li PK, Rhodes ME, Burke AM, et al. Memory enhancement mediated by the steroid sulfatase inhibitor (p-O-sulfamoyl)-N-tetradecanoyl tyramine. Life Sci 1997;60:45–51.
  • Demkowicz S, Rachon J, Daśko M, et al. Selected organophosphorus compounds with biological activity. Applications in medicine. RSC Adv 2016;6:7101–7112.
  • Kozak W, Rachon J, Daśko M, et al. Selected methods for the chemical phosphorylation and thiophosphorylation of phenols. Asian J Org Chem 2018;7:314–23.
  • Demkowicz S, Kozak W, Daśko M, et al. Phosphoroorganic metal complexes in therapeutics. Mini Rev Med Chem 2016;16:1359–73.
  • Kozak W, Daśko M, Masłyk M, et al. Phosphate tricyclic coumarin analogs as steroid sulfatase inhibitors: synthesis and biological activity. RSC Adv 2014;4:44350–8.
  • Kozak W, Daśko M, Masłyk M, et al. Synthesis and biological evaluation of thiophosphate tricyclic coumarin derivatives as steroid sulfatase inhibitors. J Asian Nat Prod Res 2015;17:1091–6.
  • Demkowicz S, Kozak W, Daśko M, et al. Synthesis of bicoumarin thiopshosphate derivatives as steroid sulfatase inhibitors. Eur J Med Chem 2015;101:358–66.
  • Demkowicz S, Kozak W, Daśko M, et al. Phosphate and thiophosphate biphenyl analogs as steroid sulfatase inhibitors. Drug Dev Res 2015;76:94–104.
  • Kozak W, Daśko M, Masłyk M, et al. Steroid sulfatase inhibitors based on phosphate and thiophosphate flavone analogs. Drug Dev Res 2015;76:450–62.
  • Kozak W, Daśko M, Wołos A, et al. Synthesis and steroid sulfatase inhibitory activities of N-alkanoyl tyramine phosphates and thiophosphates. RSC Adv 2015;5:32594–603.
  • Daśko M, Masłyk M, Kubiński K, et al. Synthesis and steroid sulfatase inhibitory activities of N-phosphorylated 3-(4-aminophenyl)-coumarin-7-O-sulfamates. Med Chem Commun 2016;7:1146–50.
  • Daśko M, Demkowicz S, Biernacki K, et al. Novel steroid sulfatase inhibitors based on N-thiophosphorylated 3-(4-aminophenyl)-coumarin-7-O-sulfamates. Drug Dev Res 2019;80:857–866.
  • Woo LWL, Sutcliffe OB, Bubert C, et al. First dual aromatase-steroid sulfatase inhibitors. J Med Chem 2003;46:3193–6.
  • Woo LWL, Jackson T, Putey A, et al. Highly potent first examples of dual aromatase-steroid sulfatase inhibitors based on biphenyl template. J Med Chem 2010;53:2155–70.
  • Woo LWL, Bubert C, Purohit A, et al. Hybrid dual aromatase-steroid sulfatase inhibitors with exquisite picomolar inhibitory activity. ACS Med Chem Lett 2011;2:243–7.
  • Woo L, Wood PM, Bubert C, et al. Synthesis and structure-activity relationship studies of derivatives of the dual aromatase-sulfatase inhibitor 4-{[(4-cyanophenyl)(4H-1,2,4-triazol-4-yl)amino]methyl}phenyl sulfamate. ChemMedChem 2013;8:779–99.
  • Wood PM, Woo LWL, Labrosse JR, et al. Chiral aromatase and dual aromatase-steroid sulfatase inhibitors from the letrozole template: synthesis, absolute configuration, and in vitro activity. J Med Chem 2008;51:4226–38.
  • Jackson T, Woo LWL, Trusselle MN, et al. Dual aromatase-sulfatase inhibitors based on the anastrozole template: synthesis, in vitro SAR, molecular modeling and in vivo activity. Org Biomol Chem 2007;5:2940–52.
  • Salah M, Abdelsamie AS, Frotscher M. First dual inhibitors of steroid sulfatase (STS) and 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1): designed multiple ligands as novel potential therapeutics for estrogen-dependent diseases. J Med Chem 2017;60:4086–92.
  • Bacsa I, Herman BE, Jójárt R, et al. Synthesis and structure-activity relationships of 2- and/or 4-genated 13β- and 13α-estrone derivatives as enzyme inhibitors of estrogen biosynthesis. J Enzyme Inhib Med Chem 2018;33:1271–82.
  • Potter BVL, Reed LWL, Woo LWL, et al. Sulfamic acid ester compounds useful in the inhibition of steroid sulphatase activity and aromatase activity. US patent 20070213383; 2007.
  • Woo LWL, Bubert C, Sutcliffe OB, et al. Dual aromatase-steroid sulfatase inhibitors. J Med Chem 2007;50:3540–60.
  • Wood PM, Woo LWL, Labrosse JR, et al. Bicyclic derivatives of the potent dual aromatase- steroid sulfatase inhibitor 2-bromo-4-{[(4-cyanophenyl)(4H-1,2,4-triazol-4-yl)amino]methyl}phenylsulfamate: synthesis, SAR, crystal structure, and in vitro and in vivo activities. ChemMedChem 2010;5:1577–93.
  • Wood PM, Woo LWL, Thomas MP, et al. Aromatase and dual aromatase-steroid sulfatase inhibitors from the Letrozole and Vorozole templates. ChemMedChem 2011;6:1423–38.
  • Lafay J, Rondot B, Bonnet P, et al. 1-N-phenyl-amino-1h-imidazole derivatives and pharmaceutical compositions containing them. US patent 20070112009; 2007.
  • Woo LWL, Jackson T, Bubert C, et al. Phenyl-sulfamates as aromatase inhibitors. US patent 7763642; 2010.
  • Potter BVL, Reed MJ, Woo LWL, et al. Oestrogen-17-suphamates as inhibitors of steroid sulphatase. US Patent 8030296; 1996.
  • Tagg SLC, Foster PA, Leese MP, et al. 2-Methoxyestradiol-3,17-O,O-bis-sulphamate and 2-deoxy-D-glucose in combination: a potential treatment for breast and prostate cancer. Br J Cancer 2008;99:1842–48.
  • Raobaikady B, Purohit A, Chander SK, et al. Inhibition of MCF-7 breast cancer cell proliferation and in vivo steroid sulphatase activity by 2-methoxyoestradiol-bis-sulphamate. J Steroid Biochem Mol Biol 2003;84:351–8.
  • Leese MP, Leblond B, Smith A, et al. 2-substituted estradiol bis-sulfamates, multitargeted antitumor agents: synthesis in vitro SAR, protein crystallography, and in vivo activity. J Med Chem 2006;49:7683–96.
  • Utsumi T, Leese MP, Chander SK, et al. The effects of 2-methoxyestrogen sulphamates on the in vitro and in vivo proliferation of breast cancer cells. J Steroid Biochem Mol Biol 2005;94:219–27.
  • Ireson CR, Chander SK, Purohit A, et al. Pharmacokinetics and efficacy of 2-methoxyoestradiol and 2-methoxyoestradiol-bis-sulphamate in vivo in rodents. Br J Cancer 2004;90:932–7.
  • Thomas MP, Potter B. Estrogen O-sulfamates and their analogues: clinical steroid sulfatase inhibitors with broad potential. J Steroid Biochem Mol Biol 2015;153:160–9.
  • Newman SP, Foster PA, Stengel C, et al. STX140 is efficacious in vitro and in vivo in taxane-resistant breast carcinoma cells. Clin Cancer Res 2008;14:597–606.
  • Meyer-Losic F, Newman SP, Day JM, et al. STX140, but not Paclitaxel, inhibits mammary tumor initiation and progression in C3(1)/SV40T/t-antigen transgenic mice. PLoS One 2013;8:e80305.
  • Wang M, Xu L, Mingzhang G, et al. Synthesis of 2-[11C]methoxy-3,17β-O,O-bis(sulfamoyl)estradiol as a new potential PET agent for imaging of steroid sulfatase (STS) in cancers. Steroids 2012;77:864–70.
  • Jourdan F, Leese MP, Dohle W, et al. Synthesis, antitubulin and antiproliferative SAR of analogues of 2-methoxyestradiol-3,17-O,O-bis sulfamate. J Med Chem 2010;53:2942–51.
  • Jourdan F, Leese MP, Dohle W, et al. Structure-activity relationships of C-17-substituted estratriene-3-O-sulfamates as anticancer agents. J Med Chem 2011;54:4863–79.
  • Potter BVL, Reed MJ, Lebrond B, et al. Aryl linker derivatised estrogen 3-sulfamates as inhibitors of steroid sulfatase. US patent 7067503; 2006.
  • Poirier D, Roy J, Maltais R, et al. A potent inhibitor of steroid sulfatase (EM-1913) blocks tumor growth in nude mice (MCF-7 xenograft). Curr Enzyme Inhib 2015;11:65–73.
  • Ouellet É, Maltais R, Ouellet C, et al. Investigation of a tetrahydroisoquinoline scaffold as dual-action steroid sulfatase inhibitors generated by parallel solid phase synthesis. Med Chem Commun 2013;4:681–92.
  • Ouellet C, Ouellet É, Poirier D. In vitro evaluation of a tetrahydroisoquinoline derivative as a steroid sulfatase inhibitor and a selective estrogen receptor modulator. Invest New Drugs 2015;33:95–103.
  • Ouellet C, Maltais R, Ouellet É, et al. Discovery of a sulfamate-based steroid sulfatase inhibitor with intrinsic selective estrogen receptor modulator properties. Eur J Med Chem 2016;119:169–82.
  • Poirier D, Roy J, Maltais R, et al. Antisulfatase, osteogenic, and anticancer activities of steroid sulfatase inhibitor EO-33 in mice. J Med Chem 2019;62:5512–21.
  • Kaise A, Ohta K, Endo Y. Novel p-carborane-containing multitarget anticancer agents inspired by the metabolism of 17β-estradiol. Bioorg Med Chem 2017;25:6371–78.
  • Kaise A, Ohta K, Shirata C, et al. Design and synthesis of p-carborane-containing sulfamates as multitarget anti-breast cancer agents. Bioorg Med Chem 2017;25:6417–26.