1,251
Views
5
CrossRef citations to date
0
Altmetric
Research Paper

Oxy-imino saccharidic derivatives as a new structural class of aldose reductase inhibitors endowed with anti-oxidant activity

, , , , , , ORCID Icon, , , & show all
Pages 1194-1205 | Received 19 Feb 2020, Accepted 27 Apr 2020, Published online: 12 May 2020

References

  • Ogurtsova K, da Rocha Fernandes JD, Huang Y, et al. IDF Diabetes Atlas: global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res. Clin. Pract 2017;128:40–50.
  • Taslimi P, Köksal E, Gören AC, et al. Anti-Alzheimer, antidiabetic and antioxidant potential of Satureja cuneifolia and analysis of ıts phenolic contents by LC-MS/MS. Arab J Chem 2020;13:4528–37.
  • Gülçin I, Gören AC, Taslimi P, et al. Anticholinergic, antidiabetic and antioxidant activities of Anatolian pennyroyal (Mentha pulegium) –analysis of its polyphenol contents by LC-MS/MS. Biocat Agr Biotech 2020;23:101441.
  • Altay A, Tohma H, Durmaz L, et al. Preliminary phytochemical analysis and evaluation of in vitro antioxidant, antiproliferative, antidiabetic and anticholinergics effects of endemic Gypsophila taxa from Turkey. J Food Biochem 2019;43:e12908.
  • Kador PF. The role of aldose reductase in the development of diabetic complications. Med Res Rev 1988;8:325–52.
  • Hashim Z, Zarina S. Osmotic stress induced oxidative damage: Possible mechanism of cataract formation in diabetes. J Diabetes Complications 2012;26:275–9.
  • Sabanayagam C, Banu R, Chee ML, et al. Incidence and progression of diabetic retinopathy: a systematic review. Lancet Diabetes Endocrinol 2019;7:140–9.
  • Snow A, Shieh B, Chang K-C, et al. Aldose reductase expression as a risk factor for cataract. Chem Biol Interact 2015;234:247–53.
  • Calcutt NA, Cooper ME, Kern TS, Schmidt AM. Therapies for hyperglycaemia-induced diabetic complications: from animal models to clinical trials. Nat Rev Drug Discov 2009;8:417–29.
  • Demir Y, Durmaz L, Taslimi P, Gülçin I. Anti-diabetic properties of dietary phenolic compounds: ınhibition effects on α-amylase, aldose reductase and α-glycosidase. Biotech Appl Biochem 2019;66:81–786.
  • Taslimi P, Aslan HE, Demir Y, et al. bromophenols and diarilmetan compounds: discovery of potent aldose reductase, α-amylase and α-glycosidase inhibitors as new therapeutic approach in diabetes and functional hyperglycemia. Intern J Biol Macromol 2018;119:857–63.
  • Grewal AS, Bhardwaj S, Pandita D, et al. Updates on aldose reductase inhibitors for management of diabetic complications and non-diabetic diseases. Mini-Reviews in Med Chem 2016;16:120–62.
  • Quattrini L, La Motta C. Aldose reductase inhibitors: 2013–present. Expert Opin Ther Pat 2019;29:199–213.
  • Ramunno A, Cosconati S, Sartini S, et al. Progresses in the pursuit of aldose reductase inhibitors: the structure-based lead optimization step. Eur J Med Chem 2012;51:216–26.
  • Guazzelli L, D’Andrea F, Sartini S, et al. Synthesis and investigation of polyhydroxylated pyrrolidine derivatives as novel chemotypes showing dual activity as glucosidase and aldose reductase inhibitors. Bioorg Chem 2019;92:103298.
  • Landi M, Catelani G, D’Andrea F, et al. Synthesis of glycose carbamides and evaluation of the induction of erythroid differentiation of human erythroleukemic K562 cells. Eur J Med Chem 2009;44:745–54.
  • Nencetti S, La Motta C, Rossello A, et al. N-(Aroyl)-N-(arylmethyloxy)-α-alanines: selective inhibitors of aldose reductase. Bioorg Med Chem 2017;25:3068–76.
  • Fan Y-L, Wu J-B, Ke X, Huang Z-P. Design, synthesis and evaluation of oxime-functionalized nitrofuranylamides as novel antitubercular agents. Bioorg Med Chem Lett 2018;28:3064–6.
  • Cuffaro D, Landi M, D’Andrea F, Guazzelli L. Preparation of 1,6-di-deoxy-d-galacto and 1,6-di-deoxy-l-altro nojirimycin derivatives by aminocyclization of a 1,5-dicarbonyl derivative. Carbohydr Res 2019;482:107744.
  • D’Andrea F, Catelani G, Pistarà V, Guazzelli L. Useful access to enantiomerically pure protected inositols from carbohydrates: the aldohexos-5-uloses route. Beilstein J Org Chem 2016;12:2343–50.
  • Chevallier OP, Migaud ME. Investigation of acetyl migrations in furanosides. Beilstein J Org Chem 2006;2:14.
  • Catelani G, Corsaro A, D’Andrea F, et al. Convenient preparation of l-arabino-hexos-5-ulose derivatives from lactose. Carbohydr Res 2003;338:2349–58.
  • Attolino E, Catelani G, D’Andrea F, Landi M. A new and efficient entry to d-xylo-hexos-4-ulose and some derivatives thereof through epoxidation of the 3,4-hexeno derivative of diacetone-d-glucose. Carbohydr Res 2006;341:2498–506.
  • Østergaard M, Christensen NJ, Hjuler CT, et al. Glycoconjugate oxime formation catalyzed at neutral pH: mechanistic insights and applications of 1,4-diaminobenzene as a superior catalyst for complex carbohydrates. Bioconjugate Chem 2018;29:1219–30.
  • Baudendistel OR, Wieland DE, Schmidt MS, Wittmann V. Real‐time NMR studies of oxyamine ligations of reducing carbohydrates under equilibrium conditions. Chem Eur J 2016;22:17359–65.
  • Guazzelli L, Catelani G, D’Andrea F, et al. Stereoselective access to the β‐d‐N‐acetylhexosaminyl‐(1→4)‐1‐deoxy‐d‐nojirimycin disaccharide series avoiding the glycosylation reaction. Eur J Org Chem 2014;2014:6527–37.
  • Dhavale DD, Matin MM. Piperidine homoazasugars: natural occurrence, synthetic aspects and biological activity study. Arkivoc 2005;110–32.
  • Hawkes GE, Herwig K, Roberts JD. Nuclear magnetic resonance spectroscopy. Use of carbon-13 spectra to establish configurations of oximes. J Org Chem 1974;39:1017–28.
  • Jackman LM, Sternhell S, Applications of nuclear magnetic resonance spectroscopy in organic chemistry. 2nd ed. Oxford: Pergamon; 1969: 226–227.