4,476
Views
12
CrossRef citations to date
0
Altmetric
Review Article

Recent advances in modulators of circadian rhythms: an update and perspective

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1267-1286 | Received 13 Mar 2020, Accepted 08 May 2020, Published online: 08 Jun 2020

References

  • Takahashi JS. Transcriptional architecture of the mammalian circadian clock. Nat Rev Genet 2017;18:164–79.
  • Bell-Pedersen D, Cassone VM, Earnest DJ, et al. Circadian rhythms from multiple oscillators: lessons from diverse organisms. Nat Rev Genet 2005;6:544–56.
  • Lopez R, Barateau L, Dauvilliers Y. [Normal organization of sleep and its changes during life]. Rev Prat 2019;69:537–45.
  • Abbott SM, Reid KJ, Zee PC. Circadian Rhythm Sleep-Wake Disorders. Psychiatr Clin North Am 2015;38:805–23.
  • Challet E. The circadian regulation of food intake. Nat Rev Endocrinol 2019;15:393–405.
  • Smolensky MH, Hermida RC, Portaluppi F. Circadian mechanisms of 24-hour blood pressure regulation and patterning. Sleep Med Rev 2017;33:4–16.
  • Massin MM, Maeyns K, Withofs N, et al. Circadian rhythm of heart rate and heart rate variability. Arch Dis Child 2000;83:179–82.
  • Sim SY, Joo KM, Kim HB, et al. Estimation of Circadian Body Temperature Rhythm Based on Heart Rate in Healthy, Ambulatory Subjects. IEEE J Biomed Health Inform 2017;21:407–15.
  • Touitou Y, Mauvieux B, Reinberg A, et al. Disruption of the circadian period of body temperature by the anesthetic propofol. Chronobiol Int 2016;33:1247–54.
  • Refinetti R, Kenagy GJ. Circadian rhythms of body temperature and locomotor activity in the antelope ground squirrel, Ammospermophilus leucurus. J Therm Biol 2018;72:67–72.
  • Yamaguchi Y, Suzuki T, Mizoro Y, et al. Mice genetically deficient in vasopressin V1a and V1b receptors are resistant to jet lag. Science 2013;342:85–90.
  • Huang Y, Xu C, He M, et al. Saliva cortisol, melatonin levels and circadian rhythm alterations in Chinese primary school children with dyslexia. Medicine (Baltimore) 2020;99:e19098.
  • Reinke H, Asher G. Crosstalk between metabolism and circadian clocks. Nat Rev Mol Cell Biol 2019;20:227–41.
  • Shostak A. Circadian Clock, Cell Division, and Cancer: From Molecules to Organism. Int J Mol Sci 2017;18:873.
  • Gaucher J, Montellier E, Sassone-Corsi P. Molecular Cogs: Interplay between Circadian Clock and Cell Cycle. Trends Cell Biol 2018;28:368–79.
  • Hirota T, Fukada Y. Resetting Mechanism of Central and Peripheral Circadian Clocks in Mammals. Zool. Sci 2004;21:359–68.
  • Ralph MR, Foster RG, Davis FC, et al. Transplanted suprachiasmatic nucleus determines circadian period. Science 1990;247:975–8.
  • Cha HK, Chung S, Lim HY, et al. Small Molecule Modulators of the Circadian Molecular Clock With Implications for Neuropsychiatric Diseases. Front Mol Neurosci 2018;11:496.
  • Chen Z, Yoo SH, Takahashi JS. Development and therapeutic potential of small-molecule modulators of circadian systems. Annu Rev Pharmacol Toxicol 2018;58:231–52.
  • Froy O, Miskin R. The interrelations among feeding, circadian rhythms and ageing. Prog Neurobiol 2007;82:142–50.
  • Saito M, Murakami E, Suda M. Circadian rhythms in disaccharidases of rat small intestine and its relation to food intake. Biochim Biophys Acta 1976;421:177–79.
  • Fernández MP, Berni J, Ceriani MF. Circadian remodeling of neuronal circuits involved in rhythmic behavior. PLoS Biol 2008;6:e69–e69.
  • Tomioka K, Matsumoto A. A comparative view of insect circadian clock systems. Cell Mol Life Sci 2010;67:1397–406.
  • Gangwisch JE. Epidemiological evidence for the links between sleep, circadian rhythms and metabolism. Obe Rev 2009;10:37–45.
  • Oishi K, Miyazaki K, Kadota K, et al. Genome-wide expression analysis of mouse liver reveals CLOCK-regulated circadian output genes. J Biol Chem 2003;278:41519–27.
  • Yamazaki S, Numano R, Abe M, et al. Resetting central and peripheral circadian oscillators in transgenic rats. Science 2000;288:682–5.
  • Yoo SH, Yamazaki S, Lowrey PL, et al. PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc. Natl. Acad. Sci. U.S.A 2004;101:5339–46.
  • Takahashi JS. Molecular components of the circadian clock in mammals. Diabetes Obes Metab 2015;17:6–11.
  • Liu AC, Lewis WG, Kay SA. Mammalian circadian signaling networks and therapeutic targets. Nat Chem Biol 2007;3:630–9.
  • Kojima S, Shingle DL, Green CB. Post-transcriptional control of circadian rhythms. J Cell Sci 2011;124:311–20.
  • Gallego M, Virshup DM. Post-translational modifications regulate the ticking of the circadian clock. Nat Rev Mol Cell Biol 2007;8:139–48.
  • Reppert SM, Weaver DR. Coordination of circadian timing in mammals. Nature 2002;418:935–41.
  • Preitner N, Damiola F, Zakany J, et al. The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 2002;110:251–60.
  • Cermakian N, Sassone-Corsi P. Multilevel regulation of the circadian clock. Nat Rev Mol Cell Biol 2000;1:59–67.
  • Meng Q-J, Logunova L, Maywood ES, et al. Setting clock speed in mammals: the CK1 epsilon tau mutation in mice accelerates circadian pacemakers by selectively destabilizing PERIOD proteins. Neuron 2008;58:78–88.
  • Asher G, Gatfield D, Stratmann M, et al. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 2008;134:317–28.
  • Maury E, Hong H, Bass JJD. Circadian disruption in the pathogenesis of metabolic syndrome. Diabetes Metab 2014;40:338–46.
  • Gale JE, Cox HI, Qian J, et al. Disruption of circadian rhythms accelerates development of diabetes through pancreatic beta-cell loss and dysfunction. J Biol Rhythms 2011;26:423–33.
  • Shanmugam V, Wafi A, Al-Taweel N, et al. Disruption of circadian rhythm increases the risk of cancer, metabolic syndrome and cardiovascular disease. Global Health Sci 2013;2013:1–42.
  • Jiang T, Ji S, Yang G, et al. [Research advances in relationship between biological clock and cardiovascular diseases]. Sheng Li Xue Bao 2019;71:783–91.
  • Yu D, Fang X, Xu Y, et al. Rev-erbα can regulate the NF-κB/NALP3 pathway to modulate lipopolysaccharide-induced acute lung injury and inflammation. Int Immunopharmacol 2019;73:312–20.
  • Fu L, Lee CC. The circadian clock: pacemaker and tumour suppressor. Nat Rev Cancer 2003;3:350–61.
  • Sulli G, Lam M, Panda S. Interplay between circadian clock and cancer: new frontiers for cancer treatment. Trends Cancer 2019;5:475–94.
  • Shafi AA, Knudsen KE. Cancer and the Circadian Clock. Cancer Res 2019;79:3806–14.
  • Haspel J. Mind your bedtime: The circadian clock and mTOR in an orphan brain disease. Sci Transl Med 2017;9:aao2261.
  • Leng Y, Musiek ES, Hu K, et al. Association between circadian rhythms and neurodegenerative diseases. Lancet Neurol 2019;18:307–18.
  • Weintraub Y, Cohen S, Chapnik N, et al. Does the circadian clock have a role in the pathogenesis of inflammatory bowel disease (IBD)?. J Crohns Colitis 2018; 12:S270–S71.
  • Scheiermann C, Gibbs J, Ince L, et al. Clocking in to immunity. Nat Rev Immunol 2018;18:423–37.
  • He B, Chen Z. Molecular targets for small-molecule modulators of circadian clocks. Curr Drug Metab 2016;17:503–12.
  • Cyr P, Bronner SM, Crawford JJ. Recent progress on nuclear receptor RORγ modulators. Bioorg Med Chem Lett 2016;26:4387–93.
  • Tamai TK, Nakane Y, Ota W, et al. Identification of circadian clock modulators from existing drugs. EMBO Mol Med 2018;10:e8724.
  • Hirota T, Lee JW, John PCS, et al. Identification of small molecule activators of cryptochrome. Science 2012;337:1094–97.
  • Nangle S, Xing W, Zheng N. Crystal structure of mammalian cryptochrome in complex with a small molecule competitor of its ubiquitin ligase. Cell Res 2013;23:1417–19.
  • Hirano A, Braas D, Fu Y-H, et al. FAD regulates CRYPTOCHROME protein stability and circadian clock in mice. Cell Rep 2017;19:255–66.
  • Lee JW, Hirota T, Kumar A, et al. Development of Small-Molecule Cryptochrome Stabilizer Derivatives as Modulators of the Circadian Clock . ChemMedChem 2015;10:1489–97.
  • Oshima T, Yamanaka I, Kumar A, et al. C-H Activation Generates Period-Shortening Molecules That Target Cryptochrome in the Mammalian Circadian Clock. Angew Chem Int Ed Engl 2015;54:7193–97.
  • Chun SK, Jang J, Chung S, et al. Identification and validation of cryptochrome inhibitors that modulate the molecular circadian clock. ACS Chem. Biol 2014;9:703–10.
  • Humphries PS, Bersot R, Kincaid J, et al. Carbazole-containing amides and ureas: Discovery of cryptochrome modulators as antihyperglycemic agents. Bioorg Med Chem Lett 2018;28:293–97.
  • Miller S, Son YL, Aikawa Y, et al. Isoform-selective regulation of mammalian cryptochromes. Nat Chem Bio 2020;16:676–85.
  • Raghuram S, Stayrook KR, Huang P, et al. Identification of heme as the ligand for the orphan nuclear receptors REV-ERBalpha and REV-ERBbeta. Nat Struct Mol Biol 2007;14:1207–13.
  • Yin L, Wu N, Curtin JC, et al. Rev-erbalpha, a heme sensor that coordinates metabolic and circadian pathways. Science 2007;318:1786–89.
  • Pardee KI, Xu X, Reinking J, et al. The structural basis of gas-responsive transcription by the human nuclear hormone receptor REV-ERBbeta. PLoS Biol 2009;7:e43.
  • Matta-Camacho E, Banerjee S, Hughes TS, et al. Structure of REV-ERBβ ligand-binding domain bound to a porphyrin antagonist. J Biol Chem 2014;289:20054–66.
  • Meng QJ, McMaster A, Beesley S, et al. Ligand modulation of REV-ERBalpha function resets the peripheral circadian clock in a phasic manner. J Cell Sci 2008;121:3629–35.
  • Kumar N, Solt LA, Wang Y, et al. Regulation of adipogenesis by natural and synthetic REV-ERB ligands. Endocrinology 2010;151:3015–25.
  • Grant D, Yin L, Collins JL, et al. GSK4112, a small molecule chemical probe for the cell biology of the nuclear heme receptor Rev-erbα. ACS Chem Biol 2010;5:925–32.
  • Solt LA, Wang Y, Banerjee S, et al. Regulation of circadian behaviour and metabolism by synthetic REV-ERB agonists. Nature 2012;485:62–8.
  • Trump RP, Bresciani S, Cooper AW, et al. Optimized chemical probes for REV-ERBα. J. Med. Chem 2013;56:4729–37.
  • Shin Y, Noel R, Banerjee S, et al. Small molecule tertiary amines as agonists of the nuclear hormone receptor Rev-erbα. Bioorg Med Chem Lett 2012;22:4413–17.
  • Noel R, Song X, Shin Y, et al. Synthesis and SAR of tetrahydroisoquinolines as Rev-erbα agonists. Bioorg Med Chem Lett 2012;22:3739–42.
  • Lee J, Lee S, Chung S, et al. Identification of a novel circadian clock modulator controlling BMAL1 expression through a ROR/REV-ERB-response element-dependent mechanism. Biochem. Biophys. Res. Commun 2016;469:580–86.
  • Kojetin D, Wang Y, Kamenecka TM, et al. Identification of SR8278, a synthetic antagonist of the nuclear heme receptor REV-ERB. ACS Chem Biol 2011;6:131–34.
  • De Mei C, Ercolani L, Parodi C, et al. Dual inhibition of REV-ERBβ and autophagy as a novel pharmacological approach to induce cytotoxicity in cancer cells. Oncogene 2015;34:2597–2608.
  • Torrente E, Parodi C, Ercolani L, et al. Synthesis and in vitro anticancer activity of the first class of dual inhibitors of REV-ERBβ and autophagy. J. Med. Chem 2015;58:5900–15.
  • Pariollaud M, Gibbs J, Hopwood T, et al. Circadian clock component REV-ERBα controls homeostatic regulation of pulmonary inflammation. J Clin Invest 2018;128:2281–96.
  • Hering Y, Berthier A, Duez H, et al. Development and implementation of a cell-based assay to discover agonists of the nuclear receptor REV-ERBα. J Biol Methods 2018;5:e94
  • Amador A, Huitron-Resendiz S, Roberts AJ, et al. Pharmacological targeting the REV-ERBs in sleep/wake regulation. PloS One 2016;11:e0162452.
  • Banerjee S, Wang Y, Solt LA, et al. Pharmacological targeting of the mammalian clock regulates sleep architecture and emotional behaviour. Nat Commun 2014;5:5759
  • Amador A, Kamenecka TM, Solt LA, et al. REV-ERBβ is required to maintain normal wakefulness and the wake-inducing effect of dual REV-ERB agonist SR9009. Biochem. Pharmacol 2018;150:1–8.
  • Cho H, Zhao X, Hatori M, et al. Regulation of circadian behaviour and metabolism by REV-ERB-α and REV-ERB-β. Nature 2012;485:123–27.
  • Mazzarino M, Rizzato N, Stacchini C, et al. A further insight into the metabolic profile of the nuclear receptor Rev-erb agonist, SR9009. Drug Test Anal 2018;10:1670–81.
  • Zhang L, Zhang R, Tien C-L, et al. REV-ERBα ameliorates heart failure through transcription repression. JCI Insight 2017;2:e95177.
  • Ercolani L, Ferrari A, De Mei C, et al. Circadian clock: time for novel anticancer strategies?. Pharmacol Res 2015;100:288–95.
  • Sulli G, Rommel A, Wang X, et al. Pharmacological activation of REV-ERBs is lethal in cancer and oncogene-induced senescence. Nature 2018;553:351–355.
  • Sitaula S, Billon C, Kamenecka TM, et al. Suppression of atherosclerosis by synthetic REV-ERB agonist. Biochem Bioph Res Co 2015;460:566–71.
  • Hwang J, Jiang A, Fikrig E. Rev-erb agonist inhibits chikungunya and O’nyong’nyong virus replication. Open Forum Infect Dis 2018; 5:ofy315.
  • Chang C, Loo C-S, Zhao X, et al. The nuclear receptor REV-ERBα modulates Th17 cell-mediated autoimmune disease. Proc Natl Acad Sci USA 2019;116:18528–36.
  • Dierickx P, Emmett MJ, Jiang C, et al. SR9009 has REV-ERB-independent effects on cell proliferation and metabolism. Proc Natl Acad Sci USA 2019;116:12147–52.
  • Zhao L, Isayama K, Chen H, et al. The nuclear receptor REV-ERBα represses the transcription of growth/differentiation factor 10 and 15 genes in rat endometrium stromal cells. Physiol Rep 2016;4:e12663.
  • Dong D, Sun H, Wu Z, et al. A validated ultra-performance liquid chromatography-tandem mass spectrometry method to identify the pharmacokinetics of SR8278 in normal and streptozotocin-induced diabetic rats. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci 2016;1020:142–47.
  • Gagnidze K, Hajdarovic KH, Moskalenko M, et al. Nuclear receptor REV-ERBα mediates circadian sensitivity to mortality in murine vesicular stomatitis virus-induced encephalitis. Proc Natl Acad Sci USA 2016;113:5730–35.
  • Chung S, Lee EJ, Yun S, et al. Impact of circadian nuclear receptor REV-ERBα on midbrain dopamine production and mood regulation. Cell 2014;157:858–68.
  • Welch RD, Billon C, Valfort A-C, et al. Pharmacological inhibition of REV-ERB stimulates differentiation, inhibits turnover and reduces fibrosis in dystrophic muscle. Sci Rep 2017;7:17142.
  • Kallen JA, Schlaeppi J-M, Bitsch F, et al. X-ray structure of the hRORalpha LBD at 1.63 A: structural and functional data that cholesterol or a cholesterol derivative is the natural ligand of RORalpha. Structure 2002;10:1697–707.
  • Kallen J, Schlaeppi J-M, Bitsch F, et al. Crystal structure of the human RORalpha Ligand binding domain in complex with cholesterol sulfate at 2.2 A. J. Biol. Chem 2004;279:14033–38.
  • Kojetin DJ, Burris TP. REV-ERB and ROR nuclear receptors as drug targets. Nat Rev Drug Discov 2014;13:197–216.
  • Marciano DP, Chang MR, Corzo CA, et al. The therapeutic potential of nuclear receptor modulators for treatment of metabolic disorders: PPARγ, RORs, and Rev-erbs. Cell Metab 2014;19:193–208.
  • Stehlin C, Wurtz JM, Steinmetz A, et al. X-ray structure of the orphan nuclear receptor RORbeta ligand-binding domain in the active conformation. Embo J 2001;20:5822–31.
  • Stehlin-Gaon C, Willmann D, Zeyer D, et al. All-trans retinoic acid is a ligand for the orphan nuclear receptor ROR beta. Nat. Struct. Biol 2003;10:820–25.
  • Jin L, Martynowski D, Zheng S, et al. Structural basis for hydroxycholesterols as natural ligands of orphan nuclear receptor RORgamma. Mol Endocrinol 2010;24:923–29.
  • He B, Nohara K, Park N, et al. The Small Molecule Nobiletin Targets the Molecular Oscillator to Enhance Circadian Rhythms and Protect against Metabolic Syndrome. Cell Metab 2016;23:610–21.
  • Chen Z, Yoo S-H, Park Y-S, et al. Identification of diverse modulators of central and peripheral circadian clocks by high-throughput chemical screening. Proc Natl Acad Sci USA 2012;109:101–06.
  • Kumar N, Solt LA, Conkright JJ, et al. The benzenesulfoamide T0901317 [N-(2,2,2-trifluoroethyl)-N-[4-[2,2,2-trifluoro-1-hydroxy-1-(trifluoromethyl)ethyl]phenyl]-benzenesulfonamide] is a novel retinoic acid receptor-related orphan receptor-alpha/gamma inverse agonist. Mol Pharmacol 2010;77:228–36.
  • Schultz JR, Tu H, Luk A, et al. Role of LXRs in control of lipogenesis. Genes Dev 2000;14:2831–38.
  • Wang Y, Kumar N, Nuhant P, et al. Identification of SR1078, a synthetic agonist for the orphan nuclear receptors RORα and RORγ. ACS Chem Biol 2010;5:1029–34.
  • Solt LA, Kumar N, Nuhant P, et al. Suppression of TH17 differentiation and autoimmunity by a synthetic ROR ligand. Nature 2011;472:491–4.
  • Kumar N, Kojetin DJ, Solt LA, et al. Identification of SR3335 (ML-176): a synthetic RORα selective inverse agonist. ACS Chem. Biol 2011;6:218–22.
  • Kumar N, Lyda B, Chang MR, et al. Identification of SR2211: a potent synthetic RORγ-selective modulator. ACS Chem. Biol 2012;7:672–77.
  • Huh JR, Englund EE, Wang H, et al. Identification of Potent and Selective Diphenylpropanamide RORγ Inhibitors. Acs Med Chem Lett 2013;4:79–84.
  • Kotoku M, Maeba T, Fujioka S, et al. Discovery of Second Generation RORγ Inhibitors Composed of an Azole Scaffold. J Med Chem 2019;62:2837–42.
  • Zhang Y, Wu X, Xue X, et al. Discovery and characterization of XY101, a potent, selective, and orally bioavailable RORγ inverse agonist for treatment of castration-resistant prostate cancer. J Med Chem 2019;62:4716–30.
  • Bronner SM, Zbieg JR, Crawford JJ. RORγ antagonists and inverse agonists: a patent review. Expert Opin Ther Pat 2017;27:101–12.
  • Manning G, Whyte DB, Martinez R, et al. The protein kinase complement of the human genome. Science 2002;298:1912–34.
  • Reischl S, Kramer AJ. Kinases and phosphatases in the mammalian circadian clock. FEBS Lett 2011;585:1393–99.
  • Eide EJ, Woolf MF, Kang H, et al. Control of mammalian circadian rhythm by CKIepsilon-regulated proteasome-mediated PER2 degradation. Mol Cell Biol 2005;25:2795–807.
  • Vanselow K, Vanselow JT, Westermark PO, et al. Differential effects of PER2 phosphorylation: molecular basis for the human familial advanced sleep phase syndrome (FASPS). Genes Dev 2006;20:2660–72.
  • Mosser EA, Chiu CN, Tamai TK, et al. Identification of pathways that regulate circadian rhythms using a larval zebrafish small molecule screen. Sci Rep 2019;9:12405
  • Ono A, Sato A, Fujimoto KJ, et al. 3,4-Dibromo-7-Azaindole Modulates Arabidopsis Circadian Clock by Inhibiting Casein Kinase 1 Activity. Plant Cell Physiol 2019;60:2360–68.
  • Lee H, Lee JW. The Roles of CKI in Circadian Rhythm. Future Med Chem 2019;11:2621–24.
  • Reischl S, Vanselow K, Westermark PO, et al. Beta-TrCP1-mediated degradation of PERIOD2 is essential for circadian dynamics. J Biol Rhythms 2007;22:375–86.
  • Meng Q-J, Maywood ES, Bechtold DA, et al. Entrainment of disrupted circadian behavior through inhibition of casein kinase 1 (CK1) enzymes. Proc Natl Acad Sci USA 2010;107:15240–45.
  • Lee JW, Hirota T, Peters EC, et al. A small molecule modulates circadian rhythms through phosphorylation of the period protein. Angew Chem Int Ed Engl 2011;50:10608–11.
  • Hirota T, Lewis WG, Liu AC, et al. A chemical biology approach reveals period shortening of the mammalian circadian clock by specific inhibition of GSK-3beta. Proc Natl Acad Sci USA 2008;105:20746–51.
  • Uehara TN, Mizutani Y, Kuwata K, et al. Casein kinase 1 family regulates PRR5 and TOC1 in the Arabidopsis circadian clock. Proc Natl Acad Sci USA 2019;116:11528–36.
  • Isojima Y, Nakajima M, Ukai H, et al. CKIepsilon/delta-dependent phosphorylation is a temperature-insensitive, period-determining process in the mammalian circadian clock. Proc Natl Acad Sci USA 2009;106:15744–9.
  • Kwak Y, Jeong J, Lee S, et al. Cyclin-dependent kinase 5 (Cdk5) regulates the function of CLOCK protein by direct phosphorylation. J Biol Chem 2013;288:36878–89.
  • Nakahata Y, Kaluzova M, Grimaldi B, et al. The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 2008;134:329–40.
  • Chang HC, Guarente L. SIRT1 mediates central circadian control in the SCN by a mechanism that decays with aging. Cell 2013;153:1448–60.
  • Sun S, Liu Z, Feng Y, et al. Sirt6 deacetylase activity regulates circadian rhythms via Per2. Biochem Biophys Res Commun 2019;511:234–38.
  • Bellet MM, Nakahata Y, Boudjelal M, et al. Pharmacological modulation of circadian rhythms by synthetic activators of the deacetylase SIRT1. Proc Natl Acad Sci USA 2013;110:3333–8.
  • Wang N, Yang G, Jia Z, et al. Vascular PPARgamma controls circadian variation in blood pressure and heart rate through Bmal1. Cell Metab 2008;8:482–91.
  • Onishi Y, Kawano Y. Rhythmic binding of Topoisomerase I impacts on the transcription of Bmal1 and circadian period. Nucleic Acids Res 2012;40:9482–92.
  • Moore-Ede MC. Jet lag, shift work, and maladaption. Physiology 1986;1:156–60.
  • Choy M, Salbu RL. Jet lag: current and potential therapies. P T 2011;36:221–31.
  • Mahoney MM. Shift work, jet lag, and female reproduction. Int J Endocrinol 2010;2010:813764–64.
  • Kelly RM, Healy U, Sreenan S, et al. Clocks in the clinic: circadian rhythms in health and disease. Postgrad Med J 2018;94:653–58.
  • Bollinger T, Schibler U. Circadian rhythms - from genes to physiology and disease. Swiss Med Wkly 2014;144:w13984w84.
  • Karatsoreos IN. Effects of circadian disruption on mental and physical health. Curr Neurol Neurosci Rep 2012;12:218–25.
  • Arble DM, Ramsey KM, Bass J, et al. Circadian disruption and metabolic disease: findings from animal models. Best Pract Res Clin Endocrinol Metab 2010;24:785–800.
  • Turek FW, Joshu C, Kohsaka A, et al. Obesity and metabolic syndrome in circadian Clock mutant mice. Science (New York, N.Y.) 2005;308:1043–45.
  • Rudic RD, McNamara P, Curtis A-M, et al. BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis. PLoS Biol 2004;2:e377–e77.
  • Le Martelot G, Claudel T, Gatfield D, et al. REV-ERBalpha participates in circadian SREBP signaling and bile acid homeostasis . PLoS Biol 2009;7:e1000181
  • Cook DN, Kang HS, Jetten AM. Retinoic Acid-Related Orphan Receptors (RORs): Regulatory Functions in Immunity, Development, Circadian Rhythm, and Metabolism. Nucl Receptor Res 2015;2:101185.
  • Hamilton BA, Frankel WN, Kerrebrock AW, et al. Disruption of the nuclear hormone receptor RORalpha in staggerer mice. Nature 1996;379:736–39.
  • Kharitonenkov A, Shiyanova TL, Koester A, et al. FGF-21 as a novel metabolic regulator. J. Clin. Invest 2005;115:1627–35.
  • Solt LA, Kojetin DJ, Burris TP. The REV-ERBs and RORs: molecular links between circadian rhythms and lipid homeostasis. Future Med Chem 2011;3:623–38.
  • Hirota T, Lee JW, St John PC, et al. Identification of small molecule activators of cryptochrome. Science (New York, N.Y.) 2012;337:1094–97.
  • Nohara K, Nemkov T, D’Alessandro A, et al. Coordinate Regulation of Cholesterol and Bile Acid Metabolism by the Clock Modifier Nobiletin in Metabolically Challenged Old Mice. Int J Mol Sci 2019;20:4281.
  • Nohara K, Mallampalli V, Nemkov T, et al. Nobiletin fortifies mitochondrial respiration in skeletal muscle to promote healthy aging against metabolic challenge. Nat Commun 2019;10:3923
  • Sehgal A, Mignot E. Genetics of sleep and sleep disorders. Cell 2011;146:194–207.
  • Kiessling S, Eichele G, Oster H. Adrenal glucocorticoids have a key role in circadian resynchronization in a mouse model of jet lag. J Clin Invest 2010;120:2600–09.
  • Yamaguchi Y, Suzuki T, Mizoro Y, et al. Mice genetically deficient in vasopressin V1a and V1b receptors are resistant to jet lag. Science (New York, N.Y.) 2013;342:85–90.
  • Jones CR, Huang AL, Ptáček LJ, et al. Genetic basis of human circadian rhythm disorders. Exp Neurol 2013;243:28–33.
  • Canales MT, Holzworth M, Bozorgmehri S, et al. Clock gene expression is altered in veterans with sleep apnea. Physiol Genomics 2019;51:77–82.
  • LeGates TA, Fernandez DC, Hattar S. Light as a central modulator of circadian rhythms, sleep and affect. Nat Rev Neurosci 2014;15:443–54.
  • Felder-Schmittbuhl M-P, Buhr ED, Dkhissi-Benyahya O, et al. Ocular Clocks: Adapting Mechanisms for Eye Functions and Health. Invest Ophthalmol Vis Sci 2018;59:4856–70.
  • Kondratov RV, Kondratova AA, Gorbacheva VY, et al. Early aging and age-related pathologies in mice deficient in BMAL1, the core componentof the circadian clock. Genes Dev 2006;20:1868–73.
  • Yang G, Chen L, Grant GR, et al. Timing of expression of the core clock gene Bmal1 influences its effects on aging and survival. Sci Transl Med 2016;8:324ra16
  • Baba K, Ribelayga CP, Michael Iuvone P, et al. The Retinal Circadian Clock and Photoreceptor Viability. Adv Exp Med Biol 2018;1074:345–50.
  • Bhatwadekar AD, Yan Y, Qi X, et al. Per2 mutation recapitulates the vascular phenotype of diabetes in the retina and bone marrow. Diabetes 2013;62:273–82.
  • Leske MC, Connell AM, Wu SY, et al. Incidence of open-angle glaucoma: the Barbados Eye Studies. The Barbados Eye Studies Group. Arch Ophthalmol 2001;119:89–95.
  • Jean-Louis G, Zizi F, Lazzaro DR, et al. Circadian rhythm dysfunction in glaucoma: A hypothesis. J Circadian Rhythms 2008;6:1
  • Mure LS, Le HD, Benegiamo G, et al. Diurnal transcriptome atlas of a primate across major neural and peripheral tissues. Science (New York, N.Y.) 2018;359:eaao0318.
  • Lu D, Lin C, Jiao X, et al. Short-term High Fructose Intake Reprograms the Transcriptional Clock Rhythm of the Murine Extraorbital Lacrimal Gland. Invest Ophthalmol Vis Sci 2019;60:2038–48.
  • Jiao X, Wu M, Lu D, et al. Transcriptional Profiling of Daily Patterns of mRNA Expression in the C57BL/6J Mouse Cornea. Curr Eye Res 2019;44:1054–66.
  • Xue Y, Liu P, Wang H, et al. Modulation of Circadian Rhythms Affects Corneal Epithelium Renewal and Repair in Mice. Invest Ophthalmol Vis Sci 2017;58:1865–74.
  • Downton P, Early JO, Gibbs JE. Circadian rhythms in adaptive immunity. Immunology 2020; Online ahead of print.
  • Mendoza J, Vanotti G. Circadian neurogenetics of mood disorders. Cell Tissue Res 2019;377:81–94.
  • Hühne A, Welsh DK, Landgraf D. Landgraf D Prospects for circadian treatment of mood disorders. Ann Med 2018;50:637–54.
  • Marco EM, Velarde E, Llorente R, et al. Disrupted Circadian Rhythm as a Common Player in Developmental Models of Neuropsychiatric Disorders. Curr Top Behav Neurosci 2016;29:155–81.
  • Manoogian ENC, Panda S. Circadian rhythms, time-restricted feeding, and healthy aging. Ageing Res Rev 2017;39:59–67.
  • Duffy JF, Zitting K-M, Chinoy ED. Aging and Circadian Rhythms. Sleep Med Clin 2015;10:423–34.
  • Firsov D, Bonny O. Circadian rhythms and the kidney. Nat Rev Nephrol 2018;14:626–35.
  • Ohashi N, Isobe S, Ishigaki S, Yasuda H. Circadian rhythm of blood pressure and the renin-angiotensin system in the kidney. Hypertens Res 2017;40:413–22.
  • Masri S, Sassone-Corsi P. The emerging link between cancer, metabolism, and circadian rhythms. Nat Med 2018;24:1795–803.
  • Reszka E, Zienolddiny S. Epigenetic Basis of Circadian Rhythm Disruption in Cancer. Methods Mol Biol 2018;1856:173–201.
  • Gibbs JE, Blaikley J, Beesley S, et al. The nuclear receptor REV-ERBα mediates circadian regulation of innate immunity through selective regulation of inflammatory cytokines. Proc Natl Acad Sci USA 2012;109:582–87.
  • Hirota T, Kay SA. Identification of small-molecule modulators of the circadian clock. Meth. Enzymol 2015;551:267–82.