1,906
Views
9
CrossRef citations to date
0
Altmetric
Article

Cinnamic acid derivatives: inhibitory activity against Escherichia coli β-glucuronidase and structure–activity relationships

, , , , , , , & show all
Pages 1372-1378 | Received 27 Feb 2020, Accepted 26 May 2020, Published online: 22 Jun 2020

References

  • Ohnuki T, Ejiri M, Kizuka M, et al. Practical one-step glucuronidation via biotransformation. Bioorgan Med Chem Lett 2019; 29:199–203.
  • Martin AM, Sun EW, Rogers GB, et al. The influence of the gut microbiome on host metabolism through the regulation of gut hormone release. Frontiers Physiol 2019;10:428.
  • Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation. Cell 2014;157:121–41.
  • Rogers G, Keating D, Young R, et al. From gut dysbiosis to altered brain function and mental illness: mechanisms and pathways. Mol Psychiatr 2016;21:738–48.
  • Li B-Y, Xu X-Y, Gan R-Y, et al. Targeting gut microbiota for the prevention and management of diabetes mellitus by dietary natural products. Foods 2019;8:440.
  • Biernat KA, Pellock SJ, Bhatt AP, et al. Structure, function, and inhibition of drug reactivating human gut microbial β-glucuronidases. Sci Rep 2019;9:1–15.
  • Wallace BD, Wang H, Lane KT, et al. Alleviating cancer drug toxicity by inhibiting a bacterial enzyme. Science 2010;330:831–5.
  • LoGuidice A, Wallace BD, Bendel L, et al. Pharmacologic targeting of bacterial β-glucuronidase alleviates nonsteroidal anti-inflammatory drug-induced enteropathy in mice. J Pharmacol Exp Ther 2012;341:447–54.
  • Saitta KS, Zhang C, Lee KK, et al. Bacterial β-glucuronidase inhibition protects mice against enteropathy induced by indomethacin, ketoprofen or diclofenac: mode of action and pharmacokinetics. Xenobiotica 2014;44:28–35.
  • Little MS, Pellock SJ, Walton WG, et al. Structural basis for the regulation of β-glucuronidase expression by human gut Enterobacteriaceae. Proc Natl Acad Sci USA 2018;115:E152–E161.
  • Kase Y, Hayakawa T, Aburada M, et al. Preventive Effects of hange-shashin-to on irinotecan hydrochloridecaused diarrhea and its relevance to the colonic prostaglandin E2 and water absorption in the rat. Jpn J Pharmacol 1997;75:407–13.
  • Tang L, Li X, Wan L, et al. Herbal medicines for irinotecan-induced diarrhea. Front Pharmacol 2019;10:182.
  • Satoh T, Igarashi A, Tanno M, et al. Inhibitory effects of baicalein derived from japanese traditional herbal medicine on SN-38 glucuronidation. J Pharm Pharm Sci 2018;21:195–206.
  • Guan H, Wang X, Wang S, et al. Comparative intestinal bacteria-associated pharmacokinetics of 16 components of Shengjiang Xiexin decoction between normal rats and rats with irinotecan hydrochloride (CPT-11)-induced gastrointestinal toxicity in vitro using salting-out sample preparation and LC-MS/MS. RSC advances 2017;7:43621–35.
  • Sun C-P, Yan J-K, Yi J, et al. The study of inhibitory effect of natural flavonoids toward β-glucuronidase and interaction of flavonoids with β-glucuronidase. Int J Biol Macromol 2020;143:349–58.
  • Wei B, Yang W, Yan Z-X, et al. Prenylflavonoids sanggenon C and kuwanon G from mulberry (Morus alba L.) as potent broad-spectrum bacterial β-glucuronidase inhibitors: Biological evaluation and molecular docking studies. J Funct Foods 2018;48:210–9.
  • Weng Z-M, Wang P, Ge G-B, et al. Structure-activity relationships of flavonoids as natural inhibitors against E. coli β-glucuronidase. Food Chem Toxicol 2017;109:975–83.
  • He Z-D, Lau K-M, Xu H-X, et al. Antioxidant activity of phenylethanoid glycosides from Brandisia hancei. J Ethnopharmacol 2000;71:483–6.
  • Delazar A, Gibbons S, Kumarasamy Y, et al. Antioxidant phenylethanoid glycosides from the rhizomes of Eremostachys glabra (Lamiaceae). Biochem Syst Ecol 2005;33:87–90.
  • Li X, Sun J, Shi H, et al. Profiling hydroxycinnamic acid glycosides, iridoid glycosides, and phenylethanoid glycosides in baobab fruit pulp (Adansonia digitata). Food Res Int 2017;99:755–61.
  • Wei B, Wang P-P, Yan Z-X, et al. Characteristics and molecular determinants of a highly selective and efficient glycyrrhizin-hydrolyzing β-glucuronidase from Staphylococcus pasteuri 3I10. Applied Microbiol Biotechnol 2018;102:9193–205.
  • Xin H, Qi X-Y, Wu J-J, et al. Assessment of the inhibition potential of Licochalcone A against human UDP-glucuronosyltransferases. Food Chem Toxicol 2016;90:112–22.
  • Lv X, Wang X-X, Hou J, et al. Comparison of the inhibitory effects of tolcapone and entacapone against human UDP-glucuronosyltransferases. Toxicol Appl Pharmacol 2016;301:42–9.
  • Khan KM, Ambreen N, Taha M, et al. Structure-based design, synthesis and biological evaluation of β-glucuronidase inhibitors. J Comput Aided Mol Design 2014;28:577–85.
  • Gupta E, Lestingi TM, Mick R, et al. Metabolic fate of irinotecan in humans: correlation of glucuronidation with diarrhea. Cancer Res 1994;54:3723–5.
  • Carrera-Quintanar L, López Roa RI, Quintero-Fabián S, et al. Phytochemicals that influence gut microbiota as prophylactics and for the treatment of obesity and inflammatory diseases. Mediat Inflamm 2018;2018:9734845–18.
  • Peperidou A, Pontiki E, Hadjipavlou-Litina D, et al. Multifunctional cinnamic acid derivatives. Molecules 2017;22:1247.
  • Wallace BD, Roberts AB, Pollet RM, et al. Structure and inhibition of microbiome β-glucuronidases essential to the alleviation of cancer drug toxicity. Chem Biol 2015;22:1238–49.
  • Taha M, Ismail NH, Imran S, et al. Synthesis of novel benzohydrazone-oxadiazole hybrids as β-glucuronidase inhibitors and molecular modeling studies . Bioorgan Med Chem 2015;23:7394–404.
  • Zawawi N, Taha M, Ahmat N, et al. Novel 2,5-disubtituted-1,3,4-oxadiazoles with benzimidazole backbone: a new class of β-glucuronidase inhibitors and in silico studies. Bioorgan Med Chem 2015;23:3119–25.
  • Salar U, Taha M, Ismail NH, et al. Thiadiazole derivatives as new class of β-glucuronidase inhibitors. Bioorgan Med Chem 2016;24:1909–18.
  • Yang W, Wei B, Yan R. Amoxapine demonstrates incomplete inhibition of β-glucuronidase activity from human gut microbiota. SLAS Discov: Adv Life Sci R&D 2018;23:76–83.