1,281
Views
6
CrossRef citations to date
0
Altmetric
Brief Report

Topoisomerases inhibition and DNA binding mode of daunomycin–oligoarginine conjugate

, , , , &
Pages 1363-1371 | Received 02 Apr 2020, Accepted 19 May 2020, Published online: 19 Jun 2020

References

  • National Institutes of Health - National Cancer Institute, Cancer Statistics Statistics at a Glance: The Burden of Cancer in the United States Retrieved from https://www.cancergov/about-cancer/understanding/statistics [last accessed 9 Nov 2018].
  • van der Meel R, Sulheim E, Shi Y, et al. Smart cancer nanomedicine. Nat Nanotechnol 2019;14:1007–17.
  • Morel D, Jeffery D, Aspeslagh S, et al. Combining epigenetic drugs with other therapies for solid tumours – past lessons and future promise. Nat Rev Clin Oncol 2020;17:91–107.
  • Giordano SH, Lin YL, Kuo YF, et al. Decline in the use of anthracyclines for breast cancer. J Clin Oncol 2012;30:2232–9.
  • Nabhan C, Byrtek M, Rai A, et al. Disease characteristics, treatment patterns, prognosis, outcomes and lymphoma-related mortality in elderly follicular lymphoma in the United States. Br J Haematol 2015;170:85–95.
  • Chihara D, Westin JR, Oki Y, et al. Management strategies and outcomes for very elderly patients with diffuse large B-cell lymphoma. Cancer 2016;122:3145–23.
  • Minotti G, Menna P, Salvatorelli E, et al. Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev 2004;56:185–229.
  • Cai F, Luis MAF, Lin X, et al. Anthracycline-induced cardiotoxicity in the chemotherapy treatment of breast cancer: preventive strategies and treatment. Mol Clin Oncol 2019;11:15–23.
  • Ciesielska E, Studzian K, Wąsowska M, et al. Cytotoxicity, cellular uptake and DNA damage by daunorubicin and its new analogues with modified daunosamine moiety. Cell Biol Toxicol 2005;21:139–47.
  • Von Hoff DD, Rozencweig M, Layard M, et al. Daunomycin-induced cardiotoxicity in children and adults A review of 110 cases. Am J Med 1977;62:200–8.
  • Szabó R, Bánóczi Z, Mezo G, et al. Daunomycin-polypeptide conjugates with antitumor activity. Biochim Biophys Acta 2010;1798:2209–16.
  • Orbán E, Manea M, Marquadt A, et al. A new daunomycin-peptide conjugate: synthesis, characterization and the effect on the protein expression profile of HL-60 cells in vitro. F. Bioconjug Chem 2011;22:2154–65.
  • Szabó I, Bősze S, Orbán E, et al. Comparative in vitro biological evaluation of daunorubicin containing GnRH-I and GnRH-II conjugates developed for tumor targeting. J Pept Sci 2015;21:426–35.
  • Miklán Z, Orbán E, Csík G, et al. New daunomycin-oligoarginine conjugates: synthesis, characterization, and effect on human leukemia and human hepatoma cells. Biopolymers 2009;92:489–501.
  • Bánóczi Z, Alexa A, Farkas A, et al. Novel cell-penetrating calpain substrate. Bioconjug Chem 2008;19:1375–81.
  • Mezo G, Manea M, Szabo I, et al. New derivatives of GnRH as potential anticancer therapeutic agent. CurrMed Chem 2008;15:2366–79.
  • Derossi D, Joliot AH, Chassaing G, Prochiantz A. The third helix of the Antennapedia homeodomain translocates through biological membranes. J Biol Chem 1994;269:10444–50.
  • Zunino F, Capranico G. DNA topoisomerase II as the primary target of anti-tumor anthracyclines. Anticancer Drug Des 1990;5:307–17.
  • Niaki EF, Van Acker T, Imre L, et al. Interactions of cisplatin and daunorubicin at the chromatin level. Sci Rep 2020;10:1107.
  • Pommier Y, Leo E, Zhang H, Marchand C. DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. Chem Biol 2010;17:421–33.
  • Capranico G, Marinello J, Chillemi G. Type I DNA topoisomerases. J Med Chem 2017;60:2169–92.
  • Crow RT, Crothers DM. Crothers inhibition of topoisomerase I by anthracycline antibiotics: evidence for general inhibition of topoisomerase I by DNA-binding agents. J Med Chem 1994;37:3191–4.
  • Kathiravan MK, Khilare MM, Nikoomanesh K, et al. Topoisomerase as target for antibacterial and anticancer drug discovery. J Enzyme Inhib Med Chem 2013;28:419–35.
  • Bettotti P, Visone V, Lunelli L, et al. Structure and properties of 
DNA molecules over the full range of biologically relevant supercoiling states. Sci Rep 2018;8:61–63
  • Defez R, Valenti A, Andreozzi A, et al. New insights into structural and functional roles of indole-3-acetic acid (IAA): changes in DNA topology and gene exprssion in bacteria. Biomolecules 2019;9:522.
  • Barone G, Guerra CF, Gambino N, et al. Intercalation of daunomycin into stacked DNA base pairs DFT study of an anticancer drug. J Biomol Struct Dyn 2008;26:115–30.
  • Wójcik K, Zarębski M, Cossarizza A, Dobrucki JW. Daunomycin, an antitumor DNA intercalator, influences histone–DNA interactions. Cancer Biol Ther 2013;14:823–32.
  • Quadrifoglio F, Crescenzi V. On the binding of actinomycin and of daunomycin to DNA: a calorimetric and spectroscopic investigation. Biophys Chem 1974;2:64–9.
  • Rabbani A, Finn RM, Ausió J. The anthracycline antibiotics: antitumor drugs that alter chromatin structure. Bioessays 2005;27:50–6.
  • Guédin A, Lacroix L, Mergny JL. Thermal melting studies of ligand DNA interactions. Methods Mol Biol 2010;613:25–35.
  • Wienken CJ, Baaske P, Duhr S, Braun D. Thermophoretic melting curves quantify the conformation and stability of RNA and DNA. Nucleic Acids Res 2011;39:e52–11.
  • Garbett NC, Ragazzon PA, Chaires JB. Circular dichroism to determine binding mode and affinity of ligand-DNA interactions. Nat Protocols 2007;2:3166–72.
  • Chang Y-M, Chen CK-M, Hou M-H. Conformational changes in DNA upon ligand binding monitored by circular dichroism. Int J Mol Sci 2012;13:3394–413.
  • Kypr J, Kejnovská I, Renciuk D, Vorlícková M. Circular dichroism and conformational polymorphism of DNA. Nucleic Acids Res 2009;37:1713–25.
  • Cera C, Palù G, Magno SM, Palumbo M. Interaction between second generation anthracyclines and DNA in the nucleosomal structure. Nucleic Acids Res 1991;19:2309–14.
  • Arakawa T, Hirano A, Shiraki K, et al. Stabilizing and destabilizing effects of arginine on deoxyribonucleic acid. Int J Biol Macromol 2010;46:217–22.
  • Hong A, Moon CJ2, Jang H, et al. Kim NJ1 isomer-specific induced circular dichroism spectroscopy of jet-cooled phenol complexes with (-)-methyl l-lactate. J Phys Chem Lett 2018;9:476–80.
  • Bayley PM, Nielsen EB, Schellman JA. The rotatory properties of molecules containing two peptide groups: theory. J Phys Chem 1969;73:228–43.
  • Airoldi M, Barone G, Gennaro G, et al. Interaction of doxorubicin with polynucleotides: a spectroscopic study. Biochemistry 2014;53:2197–207.
  • Borrelli A, Tornesello AL, Tornesello M, Buonaguro FM. Cell penetrating peptides as molecular carriers for anti-cancer agents. Molecules 2018;23:295.
  • Bode SA, Löwik D. Constrained cell penetrating peptides. Drug Discov Today Technol 2017;26:33–42.
  • Marinello J, Delcuratolo M, Capranico G. Anthracyclines as topoisomerase II poisons: from early studies to new perspectives. Int J Mol Sci 2018;19:3480.
  • Tartakoff SS, Finan JM, Curtis EJ, et al. Investigations into the DNA-binding mode of doxorubicinone. Org Biomol Chem 2019;17:1992–8.
  • Mo XM, Chen Z, Qi X, et al. DNA-binding and topoisomerase-I-suppressing activities of novel Vanadium compound Van-7 . Bioinorg Chem Appl 2012;2012:756374.
  • de Almeida SMV, Ribeiro AG, de Lima Silva GC, et al. DNA binding and topoisomerase inhibition: how can these mechanisms be explored to design more specific anticancer agents? Biomed Pharmacother 2017;96:1538–56.