1,926
Views
19
CrossRef citations to date
0
Altmetric
Review Article

Human carbonic anhydrases and post-translational modifications: a hidden world possibly affecting protein properties and functions

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1450-1461 | Received 12 May 2020, Accepted 05 Jun 2020, Published online: 10 Jul 2020

References

  • Alterio V, Di Fiore A, D’Ambrosio K, et al. Multiple binding modes of inhibitors to carbonic anhydrases: how to design specific drugs targeting 15 different isoforms? Chem Rev 2012;112:4421–68.
  • Supuran CT. Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. Nat Rev Drug Discov 2008;7:168–81.
  • Supuran CT, De Simone G, editors. Carbonic anhydrases as biocatalysts - from theory to medical and industrial applications. 1st ed. Amsterdam, The Netherlands: Elsevier B. V.; 2015.
  • Singh S, Lomelino CL, Mboge MY, et al. Cancer drug development of carbonic anhydrase inhibitors beyond the active site. Molecules 2018;23:1045. pii:
  • Supuran CT, Alterio V, Di Fiore A, et al. Inhibition of carbonic anhydrase IX targets primary tumors, metastases, and cancer stem cells: three for the price of one. Med Res Rev 2018;38:1799–836.
  • Waheed A, Zhu XL, Sly WS, et al. Rat skeletal muscle membrane associated carbonic anhydrase is 39-kDa, glycosylated, GPI-anchored CA IV. Arch Biochem Biophys 1992;294:550–6.
  • Silverman DN, McKenna R. Solvent-mediated proton transfer in catalysis by carbonic anhydrase. Acc Chem Res 2007;40:669–75.
  • Aggarwal M, Boone CD, Kondeti B, McKenna R. Structural annotation of human carbonic anhydrases. J Enzyme Inhib Med Chem 2013;28:267–77.
  • Boone CD, Pinard M, McKenna R, Silverman D. Catalytic mechanism of α-class carbonic anhydrases: CO2 hydration and proton transfer. Subcell Biochem 2014;75:31–52.
  • Mikulski RL, Silverman DN. Proton transfer in catalysis and the role of proton shuttles in carbonic anhydrase. Biochim Biophys Acta 2010;1804:422–6.
  • Aggarwal M, Kondeti B, Tu C, Maupin CM, et al. Structural insight into activity enhancement and inhibition of H64A carbonic anhydrase II by imidazoles. IUCrJ 2014;1:129–35.
  • Tu CK, Silverman DN, Forsman C, et al. Role of histidine 64 in the catalytic mechanism of human carbonic anhydrase II studied with a site-specific mutant. Biochemistry 1989;28:7913–8.
  • Available from: http://www.phosphonet.ca/.
  • Available from: http://csb.cse.yzu.edu.tw/dbGSH/index.php.
  • Hornbeck PV, Zhang B, Murray B, et al. PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Res 2015;43:D512–20.
  • Yu K, Zhang Q, Liu Z, et al. qPhos: a database of protein phosphorylation dynamics in humans. Nucleic Acids Res 2019;47:D451–D458. D8.
  • Dinkel H, Chica C, Via A, et al. Phospho.ELM: a database of phosphorylation sites-update 2011. Nucleic Acids Res 2011;39:D261–7.
  • Ullah S, Lin S, Xu Y, et al. dbPAF: an integrative database of protein phosphorylation in animals and fungi. Sci Rep 2016;6:23534.
  • Nguyen TD, Vidal-Cortes O, Gallardo O, et al. LymPHOS 2.0: an update of a phosphosite database of primary human T cells. Database (Oxford) 2015;2015:bav115.
  • Bodenmiller B, Campbell D, Gerrits B, et al. PhosphoPep-a database of protein phosphorylation sites in model organisms. Nat Biotechnol 2008;26:1339–40.
  • Gong W, Zhou D, Ren Y, et al. PepCyber:P ∼ PEP: a database of human protein protein interactions mediated by phosphoprotein-binding domains. Nucleic Acids Res 2008;36:D679–83.
  • Chernorudskiy AL, Garcia A, Eremin EV, et al. UbiProt: a database of ubiquitylated proteins. BMC Bioinformatics 2007;8:126.
  • Chen T, Zhou T, He B, et al. mUbiSiDa: a comprehensive database for protein ubiquitination sites in mammals. PLoS One 2014;9:e85744.
  • Zhang H, Loriaux P, Eng J, et al. UniPep-a database for human N-linked glycosites: a resource for biomarker discovery. Genome Biol 2006;7:R73.
  • Caragea C, Sinapov J, Silvescu A, et al. Glycosylation site prediction using ensembles of Support Vector Machine classifiers. BMC Bioinformatics 2007;8:438.
  • Blanc M, David FPA, van der Goot FG. SwissPalm 2: protein S-palmitoylation database. Methods Mol Biol 2019;2009:203–14.
  • Pierleoni A, Martelli PL, Casadio R. PredGPI: a GPI-anchor predictor. BMC Bioinformatics 2008;9:392.
  • Chen YJ, Lu CT, Su MG, et al. dbSNO 2.0: a resource for exploring structural environment, functional and disease association and regulatory network of protein S-nitrosylation. Nucleic Acids Res 2015;43:D503–11.
  • Maurer-Stroh S, Koranda M, Benetka W, et al. Towards complete sets of farnesylated and geranylgeranylated proteins. PLoS Comput Biol 2007;3:e66.
  • UniProt C. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res 2019;47:D506–D15.
  • Gnad F, Gunawardena J, Mann M. PHOSIDA 2011: the posttranslational modification database. Nucleic Acids Res 2011;39:D253–60.
  • Zahn-Zabal M, Michel PA, Gateau A, et al. The neXtProt knowledgebase in 2020: data, tools and usability improvements. Nucleic Acids Res 2020;48:D328–D34.
  • Xu H, Zhou J, Lin S, et al. PLMD: an updated data resource of protein lysine modifications. J Genet Genomics 2017;44:243–50.
  • Huang H, Arighi CN, Ross KE, et al. iPTMnet: an integrated resource for protein post-translational modification network discovery. Nucleic Acids Res 2018;46:D542–D50.
  • Sun MA, Wang Y, Cheng H, et al. RedoxDB-a curated database for experimentally verified protein oxidative modification. Bioinformatics 2012;28:2551–2.
  • Rao RSP, Zhang N, Xu D, Møller IM. CarbonylDB: a curated data-resource of protein carbonylation sites. Bioinformatics 2018;34:2518–20.
  • Kandasamy K, Keerthikumar S, Goel R, et al. Human proteinpedia: a unified discovery resource for proteomics research. Nucleic Acids Res 2009;37:D773–81.
  • Matlock MK, Holehouse AS, Naegle KM. ProteomeScout: a repository and analysis resource for post-translational modifications and proteins. Nucleic Acids Res 2015;43:D521–30.
  • Krassowski M, Paczkowska M, Cullion K, et al. ActiveDriverDB: human disease mutations and genome variation in post-translational modification sites of proteins. Nucleic Acids Res 2018;46:D901–D10.
  • Su MG, Huang KY, Lu CT, et al. topPTM: a new module of dbPTM for identifying functional post-translational modifications in transmembrane proteins. Nucleic Acids Res 2014;42:D537–45.
  • Liu Z, Wang Y, Gao T, et al. CPLM: a database of protein lysine modifications. Nucleic Acids Res 2014;42:D531–6.
  • Xie Y, Luo X, Li Y, et al. DeepNitro: prediction of protein nitration and nitrosylation sites by deep learning. Genom Proteom Bioinf 2018;16:294–306.
  • Cohen P. The origins of protein phosphorylation. Nat Cell Biol 2002;4:E127–30.
  • Ahuja LG, Aoto PC, Kornev AP, et al. Dynamic allostery-based molecular workings of kinase:peptide complexes. Proc Natl Acad Sci USA 2019;116:15052–61.
  • Muresan V, Ladescu Muresan Z. Amyloid-β precursor protein: multiple fragments, numerous transport routes and mechanisms. Exp Cell Res 2015;334:45–53.
  • Zheng J, Avvaru BS, Tu C, et al. Role of hydrophilic residues in proton transfer during catalysis by human carbonic anhydrase II. Biochemistry 2008;47:12028–36.
  • Carrie D, Gilmour KM. Phosphorylation increases the catalytic activity of rainbow trout gill cytosolic carbonic anhydrase. J Comp Physiol B Biochem Syst Environ Physiol 2016;186:111–22.
  • Blanco-Rivero A, Shutova T, Roman MJ, et al. Phosphorylation controls the localization and activation of the lumenal carbonic anhydrase in Chlamydomonas reinhardtii. PLoS One 2012;7:e49063.
  • Ditte P, Dequiedt F, Svastova E, et al. Phosphorylation of carbonic anhydrase IX controls its ability to mediate extracellular acidification in hypoxic tumors. Cancer Res 2011;71:7558–67.
  • Dorai T, Sawczuk IS, Pastorek J, et al. The role of carbonic anhydrase IX overexpression in kidney cancer. Eur. J. Cancer 2005;41:2935–47.
  • Buanne P, Renzone G, Monteleone F, et al. Characterization of carbonic anhydrase IX interactome reveals proteins assisting its nuclear localization in hypoxic cells. J Proteome Res 2013;12:282–92.
  • Swayampakula M, McDonald PC, Vallejo M, et al. The interactome of metabolic enzyme carbonic anhydrase IX reveals novel roles in tumor cell migration and invadopodia/MMP14-mediated invasion. Oncogene 2017;36:6244–61.
  • Stams T, Nair SK, Okuyama T, et al. Crystal structure of the secretory form of membrane-associated human carbonic anhydrase IV at 2.8-A resolution. Proc Natl Acad Sci USA 1996;93:13589–94.
  • Pilka ES, Kochan G, Oppermann U, Yue WW. Crystal structure of the secretory isozyme of mammalian carbonic anhydrases CA VI: implications for biological assembly and inhibitor development. Biochem Biophys Res Commun 2012;419:485–9.
  • Hilvo M, Baranauskiene L, Salzano AM, et al. Biochemical characterization of CA IX, one of the most active carbonic anhydrase isozymes. J Biol Chem 2008;283:27799–809.
  • Alterio V, Hilvo M, Di Fiore A, et al. Crystal structure of the catalytic domain of the tumor-associated human carbonic anhydrase IX. Proc Natl Acad Sci USA 2009;106:16233–8.
  • Whittington DA, Waheed A, Ulmasov B, et al. Crystal structure of the dimeric extracellular domain of human carbonic anhydrase XII, a bitopic membrane protein overexpressed in certain cancer tumor cells. Proc Natl Acad Sci USA 2001;98:9545–50.
  • Alterio V, Pan P, Parkkila S, et al. The structural comparison between membrane-associated human carbonic anhydrases provides insights into drug design of selective inhibitors. Biopolymers 2014;101:769–78.
  • Whittington DA, Grubb JH, Waheed A, et al. Expression, assay, and structure of the extracellular domain of murine carbonic anhydrase XIV: implications for selective inhibition of membrane-associated isozymes. J Biol Chem 2004;279:7223–8.
  • Waheed A, Okuyama T, Heyduk T, Sly WS. Carbonic anhydrase IV: purification of a secretory form of the recombinant human enzyme and identification of the positions and importance of its disulfide bonds. Arch Biochem Biophys 1996;333:432–8.
  • Di Fiore A, Truppo E, Supuran CT, et al. Crystal structure of the C183S/C217S mutant of human CA VII in complex with acetazolamide. Bioorg Med Chem Lett 2010;20:5023–6.
  • Picaud SS, Muniz JR, Kramm A, et al. Crystal structure of human carbonic anhydrase-related protein VIII reveals the basis for catalytic silencing. Proteins 2009;76:507–11.
  • Dalle-Donne I, Scaloni A, Giustarini D, et al. Proteins as biomarkers of oxidative/nitrosative stress in diseases: the contribution of redox proteomics. Mass Spectrom Rev 2005;24:55–99.
  • Cianfruglia L, Perrelli A, Fornelli C, et al. KRIT1 loss-of-function associated with cerebral cavernous malformation disease leads to enhanced S-glutathionylation of distinct structural and regulatory proteins. Antioxidants (Basel) 2019;8:27.
  • Chai YC, Jung CH, Lii CK, et al. Identification of an abundant S-thiolated rat liver protein as carbonic anhydrase III; characterization of S-thiolation and dethiolation reactions. Arch Biochem Biophys 1991;284:270–8.
  • Mallis RJ, Poland BW, Chatterjee TK, et al. Crystal structure of S-glutathiolated carbonic anhydrase III. FEBS Lett 2000;482:237–41.
  • Truppo E, Supuran CT, Sandomenico A, et al. Carbonic anhydrase VII is S-glutathionylated without loss of catalytic activity and affinity for sulfonamide inhibitors. Bioorg Med Chem Lett 2012;22:1560–4.
  • Del Giudice R, Monti DM, Truppo E, et al. Human carbonic anhydrase VII protects cells from oxidative damage. Biol Chem 2013;394:1343–8.
  • Di Fiore A, Monti DM, Scaloni A, et al. Protective role of carbonic anhydrases III and VII in cellular defense mechanisms upon redox unbalance. Oxid Med Cell Longev 2018;2018:2018306.
  • Monti DM, De Simone G, Langella E, et al. Insights into the role of reactive sulfhydryl groups of carbonic anhydrase III and VII during oxidative damage. J Enzyme Inhib Med Chem 2017;32:5–12.
  • Raisanen SR, Lehenkari P, Tasanen M, et al. Carbonic anhydrase III protects cells from hydrogen peroxide-induced apoptosis. Faseb J 1999;13:513–22.
  • Roy P, Reavey E, Rayne M, et al. Enhanced sensitivity to hydrogen peroxide-induced apoptosis in Evi1 transformed Rat1 fibroblasts due to repression of carbonic anhydrase III. Febs J 2010;277:441–52.
  • Shi C, Uda Y, Dedic C, et al. Carbonic anhydrase III protects osteocytes from oxidative stress. Faseb J 2018;32:440–52.
  • Silagi ES, Batista P, Shapiro IM, Risbud MV. Expression of carbonic anhydrase III, a nucleus pulposus phenotypic marker, is hypoxia-responsive and confers protection from oxidative stress-induced cell death. Sci Rep 2018;8:4856.
  • Zhang X, Taylor A, Liu Y, Shang F. Glutathiolation triggers proteins for degradation by the ubiquitin- proteasome pathway. Curr Mol Med 2017;17:258–69.
  • Foster MW, Hess DT, Stamler JS. Protein S-nitrosylation in health and disease: a current perspective. Trends Mol Med 2009;15:391–404.
  • Bachi A, Dalle-Donne I, Scaloni A. Redox proteomics: chemical principles, methodological approaches and biological/biomedical promises. Chem Rev 2013;113:596–698.
  • Ji Y, Akerboom TP, Sies H, Thomas JA. S-nitrosylation and S-glutathiolation of protein sulfhydryls by S-nitroso glutathione. Arch Biochem Biophys 1999;362:67–78.
  • Lee YI, Giovinazzo D, Kang HC, et al. Protein microarray characterization of the S-nitrosoproteome. Mol Cell Proteomics 2014;13:63–72.
  • Sharma S, Sehrawat A, Deswal R. Asada-Halliwell pathway maintains redox status in Dioscorea alata tuber which helps in germination. Plant Sci 2016;250:20–9.
  • Wang YQ, Feechan A, Yun BW, et al. S-nitrosylation of AtSABP3 antagonizes the expression of plant immunity. J Biol Chem 2009;284:2131–7.
  • Van den Steen P, Rudd PM, Dwek RA, Opdenakker G. Concepts and principles of O-linked glycosylation. Crit Rev Biochem Mol Biol 1998;33:151–208.
  • Wang Z, Park K, Comer F, et al. Site-specific GlcNAcylation of human erythrocyte proteins: potential biomarker(s) for diabetes. Diabetes 2009;58:309–17.
  • Langella E, Buonanno M, Vullo D, et al. Biochemical, biophysical and molecular dynamics studies on the proteoglycan-like domain of carbonic anhydrase IX. Cell Mol Life Sci 2018;75:3283–96.
  • Opavsky R, Pastorekova S, Zelnik V, et al. Human MN/CA9 gene, a novel member of the carbonic anhydrase family: structure and exon to protein domain relationships. Genomics 1996;33:480–7.
  • Funderburgh JL. Keratan sulfate: structure, biosynthesis, and function. Glycobiology 2000;10:951–8.
  • van Wijk XM, Lawrence R, Thijssen VL, et al. A common sugar-nucleotide-mediated mechanism of inhibition of (glycosamino)glycan biosynthesis, as evidenced by 6F-GalNAc (Ac3). Faseb J 2015;29:2993–3002.
  • Christianson HC, Menard JA, Chandran VI, et al. Tumor antigen glycosaminoglycan modification regulates antibody-drug conjugate delivery and cytotoxicity. Oncotarget 2017;8:66960–74.
  • Aebi M, Bernasconi R, Clerc S, Molinari M. N-glycan structures: recognition and processing in the ER. Trends Biochem Sci 2010;35:74–82.
  • Jayaprakash NG, Surolia A. Role of glycosylation in nucleating protein folding and stability. Biochem J 2017;474:2333–47.
  • Buren S, Ortega-Villasante C, Blanco-Rivero A, et al. Importance of post-translational modifications for functionality of a chloroplast-localized carbonic anhydrase (CAH1) in Arabidopsis thaliana. PLoS One 2011;6:e21021.
  • Thatcher BJ, Doherty AE, Orvisky E, et al. Gustin from human parotid saliva is carbonic anhydrase VI. Biochem Biophys Res Commun 1998;250:635–41.
  • Hooper LV, Beranek MC, Manzella SM, Baenziger JU. Differential expression of GalNAc-4-sulfotransferase and GalNAc-transferase results in distinct glycoforms of carbonic anhydrase VI in parotid and submaxillary glands. J Biol Chem 1995;270:5985–93.
  • Miller E, Fiete D, Blake NM, et al. A necessary and sufficient determinant for protein-selective glycosylation in vivo. J Biol Chem 2008;283:1985–91.
  • Monti SM, Supuran CT, De Simone G. Carbonic anhydrase IX as a target for designing novel anticancer drugs. Curr Med Chem 2012;19:821–30.
  • Monti SM, Supuran CT, De Simone G. Anticancer carbonic anhydrase inhibitors: a patent review (2008–2013). Expert Opin Ther Pat 2013;23:737–49.
  • Hong JH, Muhammad E, Zheng C, et al. Essential role of carbonic anhydrase XII in secretory gland fluid and HCO3 (-) secretion revealed by disease causing human mutation. J. Physiol. (Lond.) 2015;593:5299–312.
  • Muhammad E, Leventhal N, Parvari G, et al. Autosomal recessive hyponatremia due to isolated salt wasting in sweat associated with a mutation in the active site of Carbonic Anhydrase 12. Hum Genet 2011;129:397–405.
  • Feinstein Y, Yerushalmi B, Loewenthal N, et al. Natural history and clinical manifestations of hyponatremia and hyperchlorhidrosis due to carbonic anhydrase XII deficiency. Horm Res Paediatr 2014;81:336–42.
  • Feldshtein M, Elkrinawi S, Yerushalmi B, et al. Hyperchlorhidrosis caused by homozygous mutation in CA12, encoding carbonic anhydrase XII. Am J Hum Genet 2010;87:713–20.
  • Fujikawa-Adachi K, Nishimori I, Taguchi T, Onishi S. Human carbonic anhydrase XIV (CA14): cDNA cloning, mRNA expression, and mapping to chromosome 1. Genomics 1999;61:74–81.
  • Arena S, Salzano AM, Renzone G, et al. Non-enzymatic glycation and glycoxidation protein products in foods and diseases: an interconnected, complex scenario fully open to innovative proteomic studies. Mass Spectrom Rev 2014;33:49–77.
  • Huang X, Tu Z, Wang H, et al. Probing the conformational changes of ovalbumin after glycation using HDX-MS. Food Chem 2015;166:62–7.
  • Gomes RA, Oliveira LM, Silva M, et al. Protein glycation in vivo: functional and structural effects on yeast enolase. Biochem J 2008;416:317–26.
  • Cao H, Chen T, Shi Y. Glycation of human serum albumin in diabetes: impacts on the structure and function. Curr Med Chem 2015;22:4–13.
  • Zhang Q, Monroe ME, Schepmoes AA, et al. Comprehensive identification of glycated peptides and their glycation motifs in plasma and erythrocytes of control and diabetic subjects. J Proteome Res 2011;10:3076–88.
  • Keilhauer EC, Geyer PE, Mann M. HCD fragmentation of glycated peptides. J Proteome Res 2016;15:2881–90.
  • Muralidharan M, Bhat V, Bindu YS, Mandal AK. Glycation profile of minor abundant erythrocyte proteome across varying glycemic index in diabetes mellitus. Anal Biochem 2019;573:37–43.
  • Kondo T, Murakami K, Ohtsuka Y, et al. Estimation and characterization of glycosylated carbonic anhydrase I in erythrocytes from patients with diabetes mellitus. Clin Chim Acta 1987;166:227–36.
  • Gharib R, Khatibi A, Khodarahmi R, et al. Study of glycation process of human carbonic anhydrase II as well as investigation concerning inhibitory influence of 3-beta-hydroxybutyrate on it. Int J Biol Macromol 2020;149:443–9.
  • Ghosh C, Mandal S, Banik GD, et al. Targeting erythrocyte carbonic anhydrase and 18O-isotope of breath CO2 for sorting out type 1 and type 2 diabetes. Sci Rep 2016;6:35836.
  • Drazic A, Myklebust LM, Ree R, Arnesen T. The world of protein acetylation. Biochim Biophys Acta 2016;1864:1372–401.
  • Kang K, Choi JM, Fox JM, et al. Acetylation of surface lysine groups of a protein alters the organization and composition of its crystal contacts. J Phys Chem B 2016;120:6461–8.
  • Gudiksen KL, Gitlin I, Yang J, et al. Eliminating positively charged lysine epsilon-NH3+ groups on the surface of carbonic anhydrase has no significant influence on its folding from sodium dodecyl sulfate. J Am Chem Soc 2005;127:4707–14.
  • Xu G, Jaffrey SR. The new landscape of protein ubiquitination. Nat Biotechnol 2011;29:1098–100.
  • Okuyama T, Waheed A, Kusumoto W, et al. Carbonic anhydrase IV: role of removal of C-terminal domain in glycosylphosphatidylinositol anchoring and realization of enzyme activity. Arch Biochem Biophys 1995;320:315–22.
  • Orlean P, Menon AK. Thematic review series: lipid posttranslational modifications. GPI anchoring of protein in yeast and mammalian cells, or: how we learned to stop worrying and love glycophospholipids. J Lipid Res 2007;48:993–1011.
  • Knuppel-Ruppert AS, Gros G, Harringer W, Kubis HP. Immunochemical evidence for a unique GPI-anchored carbonic anhydrase isozyme in human cardiomyocytes. Am J Physiol Heart Circ Physiol 2000;278:H1335–44.
  • Waheed A, Sly WS. Carbonic Anhydrase IV. In: Supuran CT, De Simone G, ed. Carbonic anhydrases as biocatalysts - from theory to medical and industrial applications. Amsterdam: Elsevier; 2015:109–24.
  • Afjehi-Sadat L, Garcia BA. Comprehending dynamic protein methylation with mass spectrometry. Curr Opin Chem Biol 2013;17:12–9.