3,337
Views
24
CrossRef citations to date
0
Altmetric
Research Paper

Hydroxypropyl-β-cyclodextrin as an effective carrier of curcumin – piperine nutraceutical system with improved enzyme inhibition properties

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 1811-1821 | Received 13 May 2020, Accepted 18 Jul 2020, Published online: 23 Sep 2020

References

  • Liu Z, Huang P, Law S, et al. Preventive effect of curcumin against chemotherapy-induced side-effects. Front Pharmacol 2018;9:1374.
  • Sebastià N, Montoro A, Montoro A, et al. Assessment in vitro of radioprotective efficacy of curcumin and resveratrol. Radiat Meas 2011;46:962–6.
  • Hewlings SJ, Kalman DS. Curcumin: a review of its’ effects on human health. Foods 2017;6:92.
  • Rahmani AH, Alsahli MA, Aly SM, et al. Role of curcumin in disease prevention and treatment. Adv Biomed Res 2018;7:38.
  • Soleimani V, Sahebkar A, Hosseinzadeh H. Turmeric (Curcuma longa) and its major constituent (Curcumin) as nontoxic and safe substances: review. Phytother Res 2018;32:985–95.
  • Li N, Wang N, Wu T, et al. Preparation of curcumin-hydroxypropyl-β-cyclodextrin inclusion complex by cosolvency-lyophilization procedure to enhance oral bioavailability of the drug. Drug Dev Ind Pharm 2018;44:1966–74.
  • Shoba G, Joy D, Joseph T, et al. Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med 1998;64:353–6.
  • Shang L, Nienhaus K, Nienhaus GU. Engineered nanoparticles interacting with cells: size matters. J Nanobiotechnology 2014;12:5.
  • Cheng C, Peng S, Li Z, et al. Improved bioavailability of curcumin in liposomes prepared using a pH-driven, organic solvent-free, easily scalable process. RSC Adv 2017;7:25978–86.
  • Schiborr C, Kocher A, Behnam D, et al. The oral bioavailability of curcumin from micronized powder and liquid micelles is significantly increased in healthy humans and differs between sexes. Mol Nutr Food Res 2014;58:516–27.
  • Guo LD, Shen YQ, Zhao XH, et al. Curcumin combined with oxaliplatin effectively suppress colorectal carcinoma in vivo through inducing apoptosis. Phytother Res 2015;29:357–65.
  • Ferrari E, Lazzari S, Marverti G, et al. Synthesis, cytotoxic and combined cDDP activity of new stable curcumin derivatives. Bioorg Med Chem 2009;17:3043–52.
  • Mangolim CS, Moriwaki C, Nogueira AC, Sato F, et al. Curcumin-β-cyclodextrin inclusion complex: stability, solubility, characterisation by FT-IR, FT-Raman, X-ray diffraction and photoacoustic spectroscopy, and food application. Food Chem 2014;153:361–70.
  • Yadav VR, Suresh S, Devi K, Yadav S. Effect of cyclodextrin complexation of curcumin on its solubility and antiangiogenic and anti-inflammatory activity in rat colitis model. AAPS PharmSciTech 2009;10:752–62.
  • Celebioglu A, Uyar T. Fast-dissolving antioxidant curcumin/cyclodextrin inclusion complex electrospun nanofibrous webs. Food Chem 2020;317:126397.
  • Gorgani L, Mohammadi M, Najafpour GD, Nikzad M. Piperine—the bioactive compound of black pepper: from isolation to medicinal formulations. Compr Rev Food Sci Food Saf 2017;16: 124–40.
  • Quilaqueo M, Millao S, Luzardo-Ocampo I, et al. Inclusion of piperine in β-cyclodextrin complexes improves their bioaccessibility and in vitro antioxidant capacity. Food Hydrocolloids 2019;91:143–52.
  • Ezawa T, Inoue Y, Tunvichien T, et al. Changes in the physicochemical properties of piperine/β-cyclodextrin due to the formation of inclusion complexes. Int J Med Chem 2016;2016:8723139.
  • Dong L, Mai Y, Liu Q, et al. Mechanism and improved dissolution of glycyrrhetinic acid solid dispersion by alkalizers. Pharmaceutics 2020;12:82.
  • Marciniec B, Kozak M, Ogrodowczyk M. DSC study of radiostability of 1,4-dihydropyridine derivatives. J Therm Anal Calorim 2004;77:581–596.
  • Marciniec B, Stawny M, Kozak M, Naskrent M. The influence of radiation sterilization on thiamphenicol. Spectrochim Acta A Mol Biomol Spectrosc 2008;69: 865–870.
  • Marciniec B, Kozak M, Wachowski L, Ogrodowczyk M. Evaluation of radiostability of some steroid derivatives. J Therm Anal Calorim 2003;73:473–485.
  • Marciniec B, Kozak M, Dettlaff K. Thermal analysis in evaluation of the radiochemical stability of some fungicidal drugs. J Therm Anal Calorim 2004;77: 305–317.
  • Anderson NH, Bauer M, Boussac N, et al. An evaluation of fit factors and dissolution efficiency for the comparison of in vitro dissolution profiles. J Pharm Biomed Anal 1998;17:811–822.
  • Flanner H, Moore JW. Mathematical comparison of curves with an emphasis on dissolution profiles. Pharm Technol 1996;20:64–74.
  • Prior A, Frutos P, Correa CP. Comparison of dissolution profiles: current guidelines. Doncencia 2010;507–509.
  • Fischer H, Kansy M, Avdeef A, Senner F. Permeation of permanently positive charged molecules through artificial membranes – influence of physico-chemical properties. Eur J Pharm Sci 2007;31:32–42.
  • Di L, Kerns EH, Fan K, et al. High throughput artificial membrane permeability assay for blood-brain barrier. Eur J Med Chem 2003;38:223–32.
  • Studzińska-Sroka E, Piotrowska H, Kucińska M, et al. Cytotoxic activity of physodic acid and acetone extract from Hypogymnia physodes against breast cancer cell lines. Pharm Biol 2016;54:2480–2485.
  • Grabowska K, Podolak I, Galanty A, et al. In vitro anti-denaturation and anti-hyaluronidase activities of extracts and galactolipids from leaves of Impatiens parviflora DC. Nat Prod Res 2016;30:1219–1223.
  • Ellman GL, Courtney KD, Andres V, Feather-Stone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol 1961;7:88–95.
  • Kobus-Cisowska J, Szymanowska D, Maciejewska P, et al. In vitro screening for acetylcholinesterase and butyrylcholinesterase inhibition and antimicrobial activity of chia seeds (Salvia hispanica). Electron J Biotechnol 2019;37:1–10.
  • Vieira AC, Ferreira Fontes DA, Chaves LL, Alves LD, de Freitas Neto JL, et al. Multicomponent systems with cyclodextrins and hydrophilic polymers for the delivery of Efavirenz. Carbohydr Polym 2015;130:133–40.
  • Wang D, Li H, Gu J, et al. Ternary system of dihydroartemisinin with hydroxypropyl-β-cyclodextrin and lecithin: simultaneous enhancement of drug solubility and stability in aqueous solutions. J Pharm Biomed Anal 2013;83:141–8.
  • Ammar HO, Salama HA, Ghorab M, Mahmoud AA. Formulation and biological evaluation of glimepiride-cyclodextrin-polymer systems. Int J Pharm 2006;309: 129–38.
  • Pessine FBT, Calderini A, Alexandrino GL. Review: Cyclodextrin inclusion complexes probed by NMR techniques. In: Kim DH, ed. Magnetic resonance spectroscopy. IntechOpen; 2012:237–264.
  • Nesterova M, Cobra PF, Markley JL. Data from: Biological Magnetic Resonance Data Bank. National Magnetic Resonance Facility at Madison.
  • Paolino D, Vero A, Cosco D, et al. Improvement of oral bioavailability of curcumin upon microencapsulation with methacrylic copolymers. Front Pharmacol 2016;7:485.
  • John MK, Xie H, Bell EC, Liang D. Development and pharmacokinetic evaluation of a curcumin co-solvent formulation. Anticancer Res 2013;33: 4285–91.
  • Hu L, Shi Y, Li JH, et al. Enhancement of oral bioavailability of curcumin by a novel solid dispersion system. AAPS PharmSciTech 2015;16: 1327–34.
  • Wan S, Sun Y, Qi X, Tan F. Improved bioavailability of poorly water-soluble drug curcumin in cellulose acetate solid dispersion. AAPS PharmSciTech 2012;13: 159–66.
  • Murti YB, Hartini YS, Hinrichs WLJ, et al. UV-Vis spectroscopy to enable determination of the dissolution behavior of solid dispersions containing curcumin and piperine. J Young Pharm 2019;11:26–30.
  • Shao B, Cui C, Ji H, et al. Enhanced oral bioavailability of piperine by selfemulsifying drug delivery systems: in vitro, in vivo and in situ intestinal permeability studies. Drug Deliv 2015;22:740–7.
  • Kulkarni SK, Dhir A. An overview of curcumin in neurological disorders. Indian J Pharm Sci 2010;72:149–154.
  • Subedee L, Suresh RN, Jayanthi MK, et al. Preventive role of Indian black pepper in animal models of Alzheimer’s disease. J Clin Diagn Res 2015;9:FF01–FF04.
  • Cole GM, Teter B, Frautschy SA. Neuroprotective effects of curcumin. Adv Exp Med Biol 2007;595:197–212.
  • Mishra S, Palanivelu K. The effect of curcumin (turmeric) on Alzheimer’s disease: an overview. Ann Indian Acad Neurol 2008;11:13–19.
  • Lan C, Chen X, Zhang Y, et al. Curcumin prevents strokes in stroke-prone spontaneously hypertensive rats by improving vascular endothelial function. BMC Cardiovasc Disord 2018;18:43.
  • Hua S, Liu J, Zhang Y, et al. Piperine as a neuroprotective functional component in rats with cerebral ischemic injury. Food Sci Nutr 2019;7:3443–3451.
  • Shrivastava P, Vaibhav K, Tabassum R, et al. Anti-apoptotic and anti-inflammatory effect of Piperine on 6-OHDA induced Parkinson’s rat model. J Nutr Biochem 2013;24:680–7.
  • Maithilikarpagaselvi N, Sridhar MG, Sripradha R. Evaluation of free radical scavenging activities and phytochemical screening of Curcuma longa extracts. J Young Pharm 2020;12:113–117.
  • Mittal R, Gupta RL. In vitro antioxidant activity of piperine. Methods Find Exp Clin Pharmacol 2000;22:271–4.
  • Ak T, Gülçin I. Antioxidant and radical scavenging properties of curcumin. Chem Biol Interact 2008;174:27–37.
  • Gülçin I. The antioxidant and radical scavenging activities of black pepper (Piper nigrum) seeds. Int J Food Sci Nutr 2005;56:491–9.
  • Huang MT, Lysz T, Ferraro T, Abidi TF, et al. Inhibitory effects of curcumin on in vitro lipoxygenase and cyclooxygenase activities in mouse epidermis. Cancer Res 1991;51:813–9.
  • Yu Y, Shen Q, Lai Y, et al. Anti-inflammatory effects of curcumin in microglial cells. Front Pharmacol 2018;9:386.
  • Menon VP, Sudheer AR. Antioxidant and anti-inflammatory properties of curcumin. Adv Exp Med Biol 2007;595:105–25.
  • Chainani-Wu N. Safety and anti-inflammatory activity of curcumin: a component of tumeric (Curcuma longa). J Altern Complement Med 2003;9:161–8.
  • Gunes H, Gulen D, Mutlu R, et al. Antibacterial effects of curcumin: an in vitro minimum inhibitory concentration study. Toxicol Ind Health 2016;32:246–50.
  • Aldaly ZTK. Antimicrobial activity of piperine purified from Piper nigrum. J Bas Res 2010;36: 54–61.
  • Zhang HM, Li Z, Uematsu K, et al. Antibacterial activity of cyclodextrins against Bacillus strains. Arch Microbiol 2008;190:605–9.
  • Mizera M, Szymanowska D, Stasiłowicz A, et al. Computer-aided design of cefuroxime axetil/cyclodextrin system with enhanced solubility and antimicrobial activity. Biomolecules 2020;10:24.
  • Paczkowska M, Szymanowska-Powałowska D, Mizera M, et al. Cyclodextrins as multifunctional excipients: influence of inclusion into β-cyclodextrin on physicochemical and biological properties of tebipenem pivoxil. PLoS ONE 2019;14:e0210694.
  • Athanassiou G, Michaleas S, Lada-Chitiroglou E, et al. Antimicrobial activity of beta-lactam antibiotics against clinical pathogens after molecular inclusion in several cyclodextrins. A novel approach to bacterial resistance. J Pharm Pharmacol 2003;55:291–300.
  • Morohoshi T, Tokita K, Ito S, et al. Inhibition of quorum sensing in gram-negative bacteria by alkylamine-modified cyclodextrins. J Biosci Bioeng 2013;116:175–9.
  • Karginov VA. Cyclodextrin derivatives as anti-infectives. Curr Opin Pharmacol 2013;13:717–25.
  • Fedorova T, Knudsen CS, Mouridsen K, et al. Salivary acetylcholinesterase activity is increased in Parkinson’s disease: a potential marker of parasympathetic dysfunction. Parkinson’s Disease 2015;2015:156479.
  • Akinyemi AJ, Oboh G, Ogunsuyi O, et al. Curcumin-supplemented diets improve antioxidant enzymes and alter acetylcholinesterase genes expression level in Drosophila melanogaster model. Metab Brain Dis 2018;33:369–375.
  • Okello EJ, Coleman AW, Seal CJ. In-vitro anti-cholinesterase activities by piperine, an alkaloid from the spice family piperaceae. IJPSR 2015;6:3726–32.
  • Rinwa P, Kumar A. Piperine potentiates the protective effects of curcumin against chronic unpredictable stress-induced cognitive impairment and oxidative damage in mice. Brain Res 2012;1488:38–50.