1,581
Views
10
CrossRef citations to date
0
Altmetric
Research Paper

Cytotoxic substituted indolizines as new colchicine site tubulin polymerisation inhibitors

, , , , ORCID Icon, , , , , ORCID Icon & ORCID Icon show all
Pages 1581-1595 | Received 17 May 2020, Accepted 19 Jul 2020, Published online: 04 Aug 2020

References

  • Jordan MA, Wilson L. Microtubules as a target for anticancer drugs. Nat Rev Cancer 2004;4:253–65.
  • Seligmann J, Twelves C. Tubulin: an example of targeted chemotherapy. Future Med Chem 2013;5:339–52.
  • Chen H, Li Y, Sheng C, et al. Design and synthesis of cyclopropylamide analogues of combretastatin-A4 as novel microtubule-stabilizing agents. J Med Chem 2013;56:685–99.
  • Huang X, Huang R, Li L, et al. Synthesis and biological evaluation of novel chalcone derivatives as a new class of microtubule destabilizing agents. Eur J Med Chem 2017;132:11–25.
  • Fu DJ, Liu SM, Li FH, et al. Antiproliferative benzothiazoles incorporating a trimethoxyphenyl scaffold as novel colchicine site tubulin polymerisation inhibitors. J Enzyme Inhib Med Chem 2020;35:1050–9.
  • Levrier C, Sadowski MC, Rockstroh A, et al. 6α-Acetoxyanopterine: a novel structure class of mitotic inhibitor disrupting microtubule dynamics in prostate cancer cells. Mol Cancer Ther 2017;16:3–15.
  • Lee HY, Lee JF, Kumar S, et al. 3-Aroylindoles display antitumor activity in vitro and in vivo: effects of N1-substituents on biological activity. Eur J Med Chem 2017;125:1268–78.
  • Gigant B, Wang C, Ravelli RB, et al. Structural basis for the regulation of tubulin by vinblastine. Nature 2005;435:519–22.
  • Bhattacharyya B, Panda D, Gupta S, Banerjee M. Anti-mitotic activity of colchicine and the structural basis for its interaction with tubulin. Med Res Rev 2008;28:155–83.
  • Lin CM, Ho HH, Pettit GR, Hamel E. Antimitotic natural products combretastatin A-4 and combretastatin A-2: studies on the mechanism of their inhibition of the binding of colchicine to tubulin. Biochemistry 1989;28:6984–91.
  • Li W, Sun H, Xu S, et al. Tubulin inhibitors targeting the colchicine binding site: a perspective of privileged structures. Future Med Chem 2017;9:1765–94.
  • Sherbet GV. Suppression of angiogenesis and tumour progression by combretastatin and derivatives. Cancer Lett 2017;403:289–95.
  • Pettit GR, Toki B, Herald DL, et al. Antineoplastic agents. 379. Synthesis of Phenstatin phosphate. J Med Chem 1998;41:1688–95.
  • Pettit GR, Grealish MP, Herald DL, et al. Antineoplastic agents. 443. Synthesis of the cancer cell growth inhibitor hydroxyphenstatin and its sodium diphosphate prodrug. J Med Chem 2000;43:2731–7.
  • Dumontet C, Jordan MA. Microtubule-binding agents: a dynamic field of cancer therapeutics. Nat Rev Drug Discov 2010;9:790–803.
  • Li M, Tian YS. Progress in synthesis and anti-tumor activities of combretastatin A4 derivatives. J Pharm Res 2016;35:283–9.
  • Le Broc-Ryckewaert D, Pommery N, Pommery J, et al. In vitro metabolism of Phenstatin: potential pharmacological consequences. Drug Metab Lett 2011;5:209–15.
  • Kumar GB, Nayak VL, Sayeed IB, et al. Design, synthesis of Phenstatin/isocombretastatin-oxindole conjugates as antimitotic agents. Bioorg Med Chem 2016;24:1729–40.
  • Marx MA. Small-molecule, tubulin-binding compounds as vascular targeting agents. Expert Opin Ther Pat 2002;12:769–76.
  • Ojha R, Sharma S, Nepali K. Anticancer agents targeting tubulin. In: Atta-Ur-Rahman K. Zaman, eds. Topics in anticancer research. Oak Park (IL): Bentham Science; 2015.
  • Ghinet A, Abuhaie CM, Gautret P, et al. Studies on indolizines. Evaluation of their biological properties as microtubule-interacting agents and as melanoma targeting compounds. Eur J Med Chem 2015;89:115–27.
  • Al Matarneh CM, Amarandi RM, Craciun AM, et al. Design, synthesis, molecular modelling and anticancer activities of new fused phenanthrolines. Molecules 2020;25:527.
  • Hu S, Sun W, Wang Y, Yan H. Design, synthesis and anticancer activities of halogenated Phenstatin analogs as microtubule destabilizing agent. Med Chem Res 2019;28:465–72.
  • Popovici L, Amarandi RM, Mangalagiu II, et al. Synthesis, molecular modelling and anticancer evaluation of new pyrrolo[1,2-b]pyridazine and pyrrolo[2,1-a]phthalazine derivatives. J Enzyme Inhib Med Chem 2019;34:230–43.
  • Huang X, Huang R, Gou S, et al. Platinum(IV) complexes conjugated with Phenstatin analogue as inhibitors of microtubule polymerization and reverser of multidrug resistance. Bioorg Med Chem 2017;25:4686–700.
  • Prachayasittikul S, Pingaew R, Worachartcheewan A, et al. Roles of pyridine and pyrimidine derivatives as privileged scaffolds in anticancer agents. Mini Rev Med Chem 2017;17:869–901.
  • Kassab AE, Gedawy EM. Synthesis and anticancer activity of novel 2-pyridyl hexahyrocyclooctathieno[2,3-d]pyrimidine derivatives. Eur J Med Chem 2013;63:224–30.
  • Al-Majid AM, Islam MS, Atef S, et al. Synthesis of pyridine-dicarboxamide-cyclohexanone derivatives: anticancer and α-glucosidase inhibitory activities and in silico study. Molecules 2019;24:1332.
  • Badr MH, Rostom SAF, Radwan MF. Novel polyfunctional pyridines as anticancer and antioxidant agents. synthesis, Biological evaluation and in silico ADME-T Study. Chem Pharm Bull 2017;65:442–54.
  • Druta II, Andrei MA, Aburel PS. Synthesis of 5-(2′-pyridyl)-indolizines by the reaction of 2-(2′-pyridyl)-pyridinium-ylides with activated alkynes. Tetrahedron 1998;54:2107–12.
  • Rotaru AV, Danac RP, Druta ID. Synthesis of new non‐symmetrical substituted 7,7′‐bisindolizines by the direct reaction of 4,4′‐bipyridinium‐ylides with dimethyl acetylenedicarboxylate. J Heterocycl Chem 2004;41:893–7.
  • Olaru AM, Vasilache V, Danac R, Mangalagiu II. Antimycobacterial activity of nitrogen heterocycles derivatives: 7-(pyridine-4-yl)-indolizine derivatives. Part VII8–12. J Enzyme Inhib Med Chem 2017;32:1291–8.
  • Shoemaker RH. The NCI60 human tumour cell line anticancer drug screen. Nat Rev Cancer 2006;6:813–23.
  • Skehan P, Storeng R, Scudiero D, et al. New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst 1990;82:1107–12.
  • Boyd RB. The NCI in vitro anticancer drug discovery screen: concept, implementation, and operation. In: Teicher B, ed. Anticancer drug development guide: preclinical screening, clinical trials, and approval. Totowa (NJ): Humana Press Inc.; 1997.
  • Schiff PB, Fant J, Horwitz SB. Promotion of microtubule assembly in vitro by taxol. Nature 1979;277:665–7.
  • Schofield AV, Gamell C, Suryadinata R, et al. Tubulin polymerization promoting protein 1 (Tppp1) phosphorylation by Rho-associated coiled-coil kinase (rock) and cyclin-dependent kinase 1 (Cdk1) inhibits microtubule dynamics to increase cell proliferation. J Biol Chem 2013;288:7907–17.
  • Hanwell MD, Curtis DE, Lonie DC, et al. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminformatics 2012;4:17.
  • Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J Comput Chem 2009;31:455–461.
  • Prota AE, Danel F, Bachmann F, et al. The novel microtubule-destabilizing drug BAL27862 binds to the colchicine site of tubulin with distinct effects on microtubule organization. J Mol Biol 2014;426:1848–60.
  • Marangoci NL, Popovici L, Ursu EL, et al. Pyridyl-indolizine derivatives as DNA binders and pH-sensitive fluorescent dyes. Tetrahedron 2016;72:8215–22.
  • Pricope G, Ursu EL, Sardaru M, et al. Novel cyclodextrin-based pH-sensitive supramolecular host-guest assembly for staining acidic cellular organelles. Polym Chem 2018;9:968–75.
  • Onodera K, Satou K, Hirota H. Evaluations of molecular docking programs for virtual screening. J Chem Inf Model 2007;47:1609–18.
  • Lu Y, Chen J, Wang J, et al. Design, synthesis, and biological evaluation of stable colchicine binding site tubulin inhibitors as potential anticancer agents. J Med Chem 2014;57:7355–66.
  • McLoughlin EC, O’Boyle NM. Colchicine-binding site inhibitors from chemistry to clinic: a review. Pharmaceuticals 2020;13:8.
  • Klejborowska G, Urbaniak A, Maj E, et al. Synthesis, biological evaluation and molecular docking studies of new amides of 4-chlorothiocolchicine as anticancer agents. Bioorg Chem 2020;97:103664.
  • Kumbhar BV, Borogaon A, Panda D, Kunwar A. Exploring the origin of differential binding affinities of human tubulin isotypes αβII, αβIII and αβIV for DAMA-colchicine using homology modelling, molecular docking and molecular dynamics simulations. PLoS One 2016;11:e0156048.
  • Kumbhar BV, Panda D, Kunwar A. Interaction of microtubule depolymerizing agent indanocine with different human αβ tubulin isotypes. PLoS One 2018;13:e0194934.