1,757
Views
12
CrossRef citations to date
0
Altmetric
Research Paper

Efficient synthesis, biological evaluation, and docking study of isatin based derivatives as caspase inhibitors

, , , , , , , , , ORCID Icon & show all
Pages 1674-1684 | Received 27 Aug 2019, Accepted 07 Aug 2020, Published online: 25 Aug 2020

References

  • Fadeel B, Orrenius S. Apoptosis: a basic biological phenomenon with wide-ranging implications in human disease. J Intern Med 2005;258:479–517.
  • Kemnitzer W, Kasibhatla S, Jiang S, et al. Discovery of 4-aryl-4H-chromenes as a new series of apoptosis inducers using a cell- and caspase-based high-throughput screening assay. 2. Structure-activity relationships of the 7- and 5-, 6-, 8-positions. Bioorg Med Chem Lett 2005;15:4745–51.
  • Earnshaw WC, Martins LM, Kaufmann SH. Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu Rev Biochem 1999;68:383–424.
  • Becker JW, Rotonda J, Soisson SM, et al. Reducing the peptidyl features of caspase-3 inhibitors: a structural analysis. J Med Chem 2004;47:2466–74.
  • Porter AG, Janicke RU. Emerging roles of caspase-3 in apoptosis. Cell Death Differ 1999;6:99–104.
  • Nicholson DW, Thornberry NA. Caspases: killer proteases. Trends Biochem Sci 1997;22:299–306.
  • Thornberry NA, Lazebnik Y. Caspases: enemies within. Science 1998;281:1312–6.
  • Lee D, Long SA, Adams JL, et al. Potent and selective nonpeptide inhibitors of caspases 3 and 7 inhibit apoptosis and maintain cell functionality. J Biol Chem 2000;275:16007–14.
  • Rotonda J, Nicholson DW, Fazil KM, et al. The three-dimensional structure of apopain/CPP32, a key mediator of apoptosis. Nat Struct Biol 1996;3:619–25.
  • Mittl PRE, Di Marco S, Krebs JF, et al. Structure of recombinant human CPP32 in complex with the tetrapeptide acetyl-Asp-Val-Ala-Asp fluoromethyl ketone. J Biol Chem 1997;272:6539–47.
  • Ahmed FF, El-Hafeez AA, Abbas SH, et al. New 1,2,4-triazole-Chalcone hybrids induce Caspase-3 dependent apoptosis in A549 human lung adenocarcinoma cells. Eur J Med Chem 2018;151:705–22.
  • Wu Z-R, Liu J, Li J-Y, et al. Synthesis and biological evaluation of hydroxycinnamic acid hydrazide derivatives as inducer of caspase-3. Eur J Med Chem 2014;85:778–83.
  • Glória PMC, Coutinho I, Gonçalves LM, et al. Aspartic vinyl sulfones: inhibitors of a caspase-3-dependent pathway. Eur J Med Chem 2011;46:2141–6.
  • Patel S, Modi P, Ranjan V, Chhabria M. Structure-based design, synthesis and evaluation of 2,4-diaminopyrimidine derivatives as novel caspase-1 inhibitors. Bioorg Chem 2018;78:258.
  • Kassab AE, Hassan RA. Novel benzotriazole N-acylarylhydrazone hybrids: design, synthesis, anticancer activity, effects on cell cycle profile, caspase-3 mediated apoptosis and FAK inhibition. Bioorg Chem 2018;80:531–544.
  • Brethon A, Chantalat L, Christin O, et al. New caspase-1 inhibitor by scaffold hopping into bio-inspired 3D-fragment space. Bioorg Med Chem Lett 2017;27:5373–5377.
  • Patel S, Modi P, Chhabria M. Rational approach to identify newer caspase-1 inhibitors using pharmacophore based virtual screening, docking and molecular dynamic simulation studies. J Mol Graph Model 2018;81:106–115.
  • Trond YJ, Hansen V. Isatin 1,2,3-triazoles as potent inhibitors against caspase-3. Bioorg Med Chem Lett 2011;21:1626–1629.
  • Mou J, Wu S, Luo Z, et al. Structure-activity relationship study of a series of caspase inhibitors containing γ-amino acid moiety for treatment of cholestatic liver disease. Bioorg Med Chem Lett 2018;28:1874–1878.
  • Ayoup MS, Wahby Y, Abdel-Hamid H, et al. Design, synthesis and biological evaluation of novel α-acyloxy carboxamides via Passerini reaction as caspase 3/7 activators. Eur J Med Chem 2019;168:340–356.
  • Chu W, Zhang J, Zeng C, et al. N-benzylisatin sulfonamide analogues as potent caspase-3 inhibitors: synthesis, in vitro activity, and molecular modeling studies. J Med Chem 2005;48:7637–7647.
  • Kopka K, Faust A, Keul P, et al. 5-Pyrrolidinylsulfonyl isatins as a potential tool for the molecular imaging of caspases in apoptosis. J Med Chem 2006;49:6704–6715.
  • Lee D, Long SA, Murray JH, et al. Potent and selective nonpeptide inhibitors of caspases 3 and 7. J Med Chem 2001;44:2015–2026.
  • Limpachayaporn P, Schafers M, Haufe G. Isatin sulfonamides: potent caspases-3 and -7 inhibitors, and promising PET and SPECT radiotracers for apoptosis imaging. Future Med Chem 2015;7:1173–1196.
  • Krause-Heuer AM, Howell NR, Matesic L, et al. A new class of fluorinated 5-pyrrolidinylsulfonyl isatin caspase inhibitors for PET imaging of apoptosis. Med Chem Commun 2013;4:347–352.
  • O’Brien T, Lee D. Prospects for caspase inhibitors. Mini Rev Med Chem 2004;4:153–165.
  • Lakshmi PJ, Suneel Kumar BVS, Nayana RS, et al. Design, synthesis, and discovery of novel non-peptide inhibitor of caspase-3 using ligand based and structure based virtual screening approach. Bioorg Med Chem 2009;17:6040–6047.
  • Morris GM, Huey R, Lindstrom W, et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 2009;30:2785–2791.
  • Ganesan R, Mittl PRE, Jelakovic S, Grütter MG. Extended substrate recognition in caspase-3 revealed by high resolution X-ray structure analysis. J Mol Biol 2006;359:1378–1388.
  • Firoozpour L, Sadatnezhad K, Dehghani S, et al. An efficient piecewise linear model for predicting activity of caspase-3 inhibitors. DARU J Pharm Sci 2012;20:31–36.
  • Firoozpour L, Edraki N, Nakhjiri M, et al. Cytotoxic activity evaluation and QSAR study of chromene-based chalcones. Arch. Pharm. Res 2012;35:2117–2125.
  • Hassanzadeh H, Bahrami AR, Sadeghian H, et al. Cytotoxic and anticancer activities of an acridine derivative; 11-chloro-3-methyl-3H-imidazo[4,5-a]acridine on 5637 cells. Med Chem Res 2016;25:1852–1860.
  • Mahdavi M, Davoodi J, Zali MR, Foroumadi A. Concomitant activation of caspase-9 and down-regulation of IAP proteins as a mechanism of apoptotic death in HepG2, T47D and HCT-116 cells upon exposure to a derivative from 4-aryl-4H-chromenes family. Biomed Pharmacother 2011;65:175–182.
  • Aryapour H, Mahdavi M, Mohebbi SR, et al. Anti-proliferative and apoptotic effects of the derivatives from 4-aryl-4H-chromene family on human leukemia K562 cells. Arch Pharm Res 2012;35:1573–1582.
  • Rahmani-Nezhad S, Safavi M, Pordeli M, et al. Synthesis, in vitro cytotoxicity and apoptosis inducing study of 2-aryl-3-nitro-2H-chromene derivatives as potent anti-breast cancer agents. Eur J Med Chem 2014;86:562–569.
  • NazariTarhan H, Hosseinzadeh L, Aliabadi A, et al. Cytotoxic and apoptogenic properties of 2-phenylthiazole-4-carboxamide derivatives in human carcinoma cell lines. J Rep Pharm Sci 2012;1:1–6.
  • Khoshneviszadeh M, Edraki N, Miri R, et al. QSAR Study of 4-Aryl-4H-chromenes as a new series of apoptosis inducers using different chemometric tools. Chem Biol Drug Des 2012;79:442–458.
  • Zhang W, Ai J, Shi D, et al. Discovery of novel type II c-Met inhibitors based on BMS-777607. Eur J Med Chem 2014;80:254–266.
  • Jin Y, Zhou Z-Y, Tian W, et al. 4′-Alkoxyl substitution enhancing the anti-mitotic effect of 5-(3′,4′,5′-substituted)anilino-4-hydroxy-8-nitroquinazolines as a novel class of anti-microtubule agents. Bioorg Med Chem Lett 2006;16:5864–5869.
  • Yang S-K, Kang JS, Oelschlaeger P, Yang K-W. Azolylthioacetamide: a highly promising scaffold for the development of metallo-β-lactamase inhibitors. ACS Med Chem Lett 2015;6:455–460.
  • Chiou CT, Lee W-C, Liao J-H, et al. Synthesis and evaluation of 3-ylideneoxindole acetamides as potent anticancer agents. Eur J Med Chem 2015;98:1–12.
  • Guo X, Ma X, Yang Q, et al. Discovery of 1-aryloxyethyl piperazine derivatives as Kv1.5 potassium channel inhibitors (part I). Eur J Med Chem 2014;81:89–94.
  • Dassault Systèmes BIOVIA. Discovery Studio Modeling Environment, Release 2017. San Diego: Dassault Systèmes; 2016.
  • Limpachayaporn P, Schäfers M, Schober O, et al. Synthesis of new fluorinated, 2-substituted 5-pyrrolidinylsulfonyl isatin derivatives as caspase-3 and caspase-7 inhibitors: nonradioactive counterparts of putative PET-compatible apoptosis imaging agents. Bioorg Med Chem 2013;21:2025–2036.