1,154
Views
14
CrossRef citations to date
0
Altmetric
Short Communication

Sulphonamide inhibition profile of Staphylococcus aureus β-carbonic anhydrase

, , ORCID Icon, , , ORCID Icon & ORCID Icon show all
Pages 1834-1839 | Received 07 Sep 2020, Accepted 17 Sep 2020, Published online: 24 Sep 2020

References

  • Casewell MW, Hill RL. The carrier state: methicillin-resistant staphylococcus aureus. J Antimicrob Chemother 1986;18( Suppl A):1–12.
  • Noble WC, Valkenburg HA, Wolters CH. Carriage of staphylococcus aureus in random samples of a normal population. J Hyg (Lond) 1967;65:567–73.
  • Microbiota of the human body. Advances in experimental medicine and biology. Switzerland, Cham: Springer.
  • Lowy FD. Staphylococcus aureus infections. N Engl J Med 1998;339:520–32.
  • Keynan Y, Rubinstein E. Staphylococcus aureus bacteremia, risk factors, complications, and management. Crit Care Clin 2013;29:547–62.
  • Chatterjee SS, Otto M. Improved understanding of factors driving methicillin-resistant staphylococcus aureus epidemic waves. Clin Epidemiol 2013;5:(205–17.
  • Deurenberg RH, Stobberingh EE. The evolution of staphylococcus aureus. Infect Genet Evol 2008;8:747–63.
  • Petti CA, Sanders LL, Trivette SL, et al. Postoperative bacteremia secondary to surgical site infection. Clin Infect Dis 2002;34:305–8.
  • Klein E, Smith DL, Laxminarayan R. Hospitalizations and deaths caused by methicillin-resistant staphylococcus aureus, united states, 1999–2005. Emerging Infect Dis 2007;13:1840–6.
  • Kallen AJ, Mu Y, Bulens S, et al. Health care-associated invasive mrsa infections, 2005–2008. JAMA 2010;304:641–8.
  • Fuda CC, Fisher JF, Mobashery S. Beta-lactam resistance in staphylococcus aureus: the adaptive resistance of a plastic genome. Cell Mol Life Sci 2005;62:2617–33.
  • Tong SYC, Davis JS, Eichenberger E, et al. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev 2015;28:603–61.
  • Berger-Bachi B. Genetic basis of methicillin resistance in staphylococcus aureus. Cell Mol Life Sci 1999;56:764–70.
  • Ubukata K, Nonoguchi R, Matsuhashi M, Konno M. Expression and inducibility in staphylococcus aureus of the meca gene, which encodes a methicillin-resistant s. Aureus-specific penicillin-binding protein. J Bacteriol 1989;171:2882–5.
  • Guyot A, Layer G. MRSA - 'bug-bear' of a surgical practice: reducing the incidence of MRSA surgical site infections. Ann R Coll Surg Engl 2006;88:222–3.
  • Jacobson MA, Gellermann H, Chambers H. Staphylococcus aureus bacteremia and recurrent staphylococcal infection in patients with acquired immunodeficiency syndrome and aids-related complex. Am J Med 1988;85:172–6.
  • Tuazon CU, Perez A, Kishaba T, Sheagren JN. Staphylococcus aureus among insulin-injecting diabetic patients. An increased carrier rate. Jama 1975;231:1272
  • Sherertz RJ, Reagan DR, Hampton KD, et al. A cloud adult: The staphylococcus aureus-virus interaction revisited. Ann Intern Med 1996;124:539–47.
  • Kramer A, Schwebke I, Kampf G. How long do nosocomial pathogens persist on inanimate surfaces? A systematic review. BMC Infect Dis 2006;6:(130
  • Supuran CT, De Simone G, Carbonic anhydrases as biocatalysts: from theory to medical and industrial applications. In Carbonic anhydrases as biocatalysts: from theory to medical and industrial applications; 2015.
  • Claudiu TS. Carbonic anhydrases as drug targets - an overview. Curr Top Med Chem 2007;7:825–33.
  • Supuran CT. Carbonic anhydrases: Novel therapeutic applications for inhibitors and activators. Nat Rev Drug Discov 2008;7:168–81.
  • Kikutani S, Nakajima K, Nagasato C, et al. Thylakoid luminal θ-carbonic anhydrase critical for growth and photosynthesis in the marine diatom Phaeodactylum tricornutum. Proc Natl Acad Sci USA 2016;113:9828–33.
  • Jensen EL, Clement R, Kosta A, et al. A new widespread subclass of carbonic anhydrase in marine phytoplankton. ISME J 2019;13:2094–106.
  • Syrjanen L, Kuuslahti M, Tolvanen M, et al. The β-carbonic anhydrase from the malaria mosquito Anopheles gambiae is highly inhibited by sulfonamides. Bioorg Med Chem 2015;23:2303–9.
  • Vullo D, Del Prete S, Di Fonzo P, et al. Comparison of the sulfonamide inhibition profiles of the beta- and gamma-carbonic anhydrases from the pathogenic bacterium Burkholderia pseudomallei. Molecules 2017;22:421.
  • Supuran CT. Bortezomib inhibits bacterial and fungal β-carbonic anhydrases. Bioorg Med Chem 2016;24:4406–9.
  • Innocenti A, Hall RA, Schlicker C, et al. Carbonic anhydrase inhibitors. Inhibition of the beta-class enzymes from the fungal pathogens candida albicans and cryptococcus neoformans with aliphatic and aromatic carboxylates. Bioorg Med Chem 2009;17:2654–7.
  • Nishimori I, Minakuchi T, Kohsaki T, et al. Carbonic anhydrase inhibitors: the beta-carbonic anhydrase from Helicobacter pylori is a new target for sulfonamide and sulfamate inhibitors. Bioorg Med Chem Lett 2007;17:3585–94.
  • Carta F, Maresca A, Covarrubias AS, et al. Carbonic anhydrase inhibitors. Characterization and inhibition studies of the most active beta-carbonic anhydrase from mycobacterium tuberculosis, rv3588c. Bioorg Med Chem Lett 2009;19:6649–54.
  • Del Prete S, Vullo D, De Luca V, et al. Sulfonamide inhibition studies of the β-carbonic anhydrase from the pathogenic bacterium Vibrio cholerae. Bioorg Med Chem 2016;24:1115–20.
  • Murray AB, Aggarwal M, Pinard M, et al. Structural mapping of anion inhibitors to β-Carbonic Anhydrase psCA3 from Pseudomonas aeruginosa. ChemMedChem 2018;13:2024–9.
  • Ferraroni M, Del Prete S, Vullo D, et al. Crystal structure and kinetic studies of a tetrameric type ii β-carbonic anhydrase from the pathogenic bacterium Vibrio cholerae. Acta Crystallogr D Biol Crystallogr 2015;71:2449–56.
  • Dostal J, Brynda J, Blaha J, et al. Crystal structure of carbonic anhydrase cance103p from the pathogenic yeast candida albicans. BMC Struct Biol 2018;18:14
  • Schlicker C, Hall RA, Vullo D, et al. Structure and inhibition of the co2-sensing carbonic anhydrase can2 from the pathogenic fungus Cryptococcus neoformans. J Mol Biol 2009;385:1207–20.
  • Cronk JD, Rowlett RS, Zhang KY, et al. Identification of a novel noncatalytic bicarbonate binding site in eubacterial beta-carbonic anhydrase. Biochemistry 2006;45:4351–61.
  • Huang S, Xue Y, Sauer-Eriksson E, et al. Crystal structure of carbonic anhydrase from Neisseria gonorrhoeae and its complex with the inhibitor acetazolamide. J Mol Biol 1998;283:301–10.
  • Suarez Covarrubias A, Larsson AM, Hogbom M, et al. Structure and function of carbonic anhydrases from mycobacterium tuberculosis. J Biol Chem 2005;280:18782–9.
  • Pinard MA, Lotlikar SR, Boone CD, et al. Structure and inhibition studies of a type ii beta-carbonic anhydrase psca3 from Pseudomonas aeruginosa. Bioorg Med Chem 2015;23:4831–8.
  • Uniprot UniProt Consortium01.03.2017].
  • Laitinen OH, Airenne KJ, Hytonen VP, et al. A multipurpose vector system for the screening of libraries in bacteria, insect and mammalian cells and expression in vivo. Nucleic Acids Res 2005;33:e42.
  • Piao S, Xu Y, Ha NC. Crystallization and preliminary x-ray crystallographic analysis of MacA from Actinobacillus actinomycetemcomitans. Acta Crystallogr Sect F Struct Biol Cryst Commun 2008;64:391–3.
  • Hilvo M, Baranauskiene L, Salzano AM, et al. Biochemical characterization of ca ix, one of the most active carbonic anhydrase isozymes. J Biol Chem 2008;283:27799–809.
  • Khalifah RG. The carbon dioxide hydration activity of carbonic anhydrase. I. Stop-flow kinetic studies on the native human isoenzymes B and C. J Biol Chem 1971;246:2561–73.
  • Del Prete S, Bua S, Supuran CT, Capasso C. Escherichia coli γ-carbonic anhydrase: characterisation and effects of simple aromatic/heterocyclic sulphonamide inhibitors. J Enz Inhib Med Chem 2020;35:1545–54.
  • Mishra CB, Tiwari M, Supuran CT. Progress in the development of human carbonic anhydrase inhibitors and their pharmacological applications: where are we today? Med Res Rev 2020.
  • De Simone G, Supuran CT. (In)organic anions as carbonic anhydrase inhibitors. J Inorg Biochem 2012;111:117–29.
  • Hilvo M, Innocenti A, Monti SM, et al. Recent advances in research on the most novel carbonic anhydrases, ca xiii and xv. Curr Pharm Des 2008;14:672–8.
  • Monti SM, De Simone G, Dathan NA, et al. Kinetic and anion inhibition studies of a β-carbonic anhydrase (FbiCA 1) from the C4 plant Flaveria bidentis. Bioorg Med Chem Lett 2013;23:1626–30.