1,626
Views
4
CrossRef citations to date
0
Altmetric
RESEARCH PAPER

Anticancer active trifluoromethylated fused triazinones are safe for early-life stages of zebrafish (Danio rerio) and reveal a proapoptotic action

ORCID Icon, ORCID Icon & ORCID Icon
Pages 336-344 | Received 17 May 2020, Accepted 05 Dec 2020, Published online: 04 Jan 2021

References

  • Wang J, Sánchez-Roselló M, Aceña JL, et al. Fluorine in pharmaceutical industry: fluorine-containing drugs introduced to the market in the last decade (2001–2011). Chem Rev 2014;114:2432–506.
  • Shah P, Westwell AD. The role of fluorine in medicinal chemistry. J Enzyme Inhib Med Chem 2007;22:527–40.
  • Meanwell NA. Fluorine and fluorinated motifs in the design and application of bioisosteres for drug design. J Med Chem 2018;61:5822–80.
  • Surya Prakash GK, Wang F. Fluorine: the new kingpin of drug discovery. Chem Today 2012;30:30–6.
  • Isanbor C, O’Hagan D. Fluorine in medicinal chemistry: a review of anti-cancer agents. J Fluorine Chem 2006;127:303–19.
  • Sztanke M, Sztanke K, (inventors). Medical University of Lublin (assignee). Derivatives of 3-(trifluoromethyl)-7,8-dihydroimidazo[2,1-c][1,2,4]triazin-4(6H)-one substituted by phenyl, alkylphenyl and alkoxyphenyl, method for obtaining them and medical application. Patent Application Publication No: PL 2019/429161 A1; 6 Mar 2019.
  • Sztanke M, Sztanke K, (inventors). Medical University of Lublin (assignee). 3-(Trifluoromethyl)-7,8-dihydroimidazo[2,1-c][1,2,4]triazin-4(6H)-ones substituted by monochlorophenyl or dichlorophenyl, method for obtaining them and medical application, Patent Application Publication No: PL 2019/429162 A1; 6 Mar 2019.
  • Sztanke M, Rzymowska J, Janicka M, Sztanke K. Two novel classes of fused azaisocytosine-containing congeners as promising drug candidates: design, synthesis as well as in vitro, ex vivo and in silico studies. Bioorg Chem 2020;95:103480.
  • Makki MST, Abdel-Rahman RM, Aqlan FM. Synthesis of fluorinated heterobicyclic nitrogen systems containing 1,2,4-triazine moiety as CDK2 inhibition agents. Int J Org Chem 2015;05:200–11.
  • Sittaramane V, Padgett J, Salter P, et al. Discovery of quinoline-derived trifluoromethyl alcohols, determination of their in vivo toxicity and anticancer activity in a zebrafish embryo model. ChemMedChem 2015;10:1802–7.
  • Cassar S, Adatto I, Freeman JL, et al. Use of zebrafish in drug discovery toxicology. Chem Res Toxicol 2020;33:95–118.
  • Tavares B, Santos Lopes S. The importance of zebrafish in biomedical research. Acta Med Port 2013;26:583–92.
  • Chakraborty C, Hsu CH, Wen ZH, Lin CS, et al. Zebrafish: a complete animal model for in vivo drug discovery and development. Curr Drug Metab 2009;10:116–24.
  • Karthiga P, Ponnanikajamideen M, Samuel Rajendran R, et al. Characterization and toxicology evaluation of zirconium oxide nanoparticles on the embryonic development of zebrafish, Danio rerio. Drug Chem Toxicol 2019;42:104–11.
  • Yang X, Sun Z, Wang W, et al. Developmental toxicity of synthetic phenolic antioxidants to the early life stage of zebrafish. Sci Total Environ 2018;643:559–68.
  • Chen TH, Wang YH, Wu YH. Developmental exposures to ethanol or dimethylsulfoxide at low concentrations alter locomotor activity in larval zebrafish: implications for behavioral toxicity bioassays. Aquat Toxicol 2011;102:162–6.
  • Yang L, Ho NY, Alshut R, et al. Zebrafish embryos as models for embryotoxic and teratological effects of chemicals. Reprod Toxicol 2009;28:245–53.
  • Bedell V, Buglo E, Marcato D, et al. Zebrafish: a pharmacogenetic model for anesthesia. Methods Enzymol 2018;602:189–209.
  • Haghdoost MM, Golbaghi G, Létourneau M, et al. Lipophilicity-antiproliferative activity relationship study leads to the preparation of a ruthenium(II) arene complex with considerable in vitro cytotoxicity against cancer cells and a lower in vivo toxicity in zebrafish embryos than clinically approved cis-platin. Eur J Med Chem 2017;132:282–93.
  • Chakraborty C, Sharma AR, Sharma G, Lee SS. Zebrafish: a complete animal model to enumerate the nanoparticle toxicity. J Nanobiotechnology 2016;14:65.
  • Teixidó E, Kießling TR, Krupp E, et al. Automated morphological feature assessment for zebrafish embryo developmental toxicity screens. Toxicol Sci 2019;167:438–49.
  • Ali S, Champagne DL, Spaink HP, Richardson MK. Zebrafish embryos and larvae: a new generation of disease models and drug screens. Birth Defects Res C Embryo Today 2011;93:115–33.
  • Shi Q, Zhuang Y, Hu T, et al. Developmental toxicity of triclocarban in zebrafish (Danio rerio) embryos. J Biochem Mol Toxicol 2019; 33:e22289.
  • Mirakabad HZ, Farsi M, Shafaroudi SM, et al. Comparison the effect of ferutinin and 17β-estradiol on bone mineralization of developing zebrafish (Danio rerio) larvae. Int J Mol Sci 2019;20:1507.
  • Anduran E, Aspatwar A, Parvathaneni N-K, et al. Hypoxia-activated prodrug derivatives of carbonic anhydrase inhibitors in benzenesulfonamide series: synthesis and biological evaluation. Molecules 2020;25:2347.
  • Qian L, Qi S, Cao F, et al. Effects of penthiopyrad on the development and behaviour of zebrafish in early-life stages. Chemosphere 2019;214:184–94.
  • Shalini S, Dorstyn L, Dawar S, Kumar S. Old, new and emerging functions of caspases. Cell Death Differ 2015;22:526–39.
  • OECD Guidelines for the Testing of Chemicals, Test No. 236: Fish Embryo Acute Toxicity (FET) Test. Paris: OECD; 2013.
  • Sztanke M, Sztanke K, Rajtar B, et al. The influence of some promising fused azaisocytosine-containing congeners on zebrafish (Danio rerio) embryos/larvae and their antihaemolytic, antitumour and antiviral activities. Eur J Pharm Sci 2019;132:34–43.
  • Finney DJ. Probit analysis. J Inst Actuaries 1952;78:388–90.
  • Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes. Official Journal of the European Union. 2010;L276:33–79.
  • de Koning C, Beekhuijzen M, Tobor-Kapłon M, et al. Visualizing compound distribution during zebrafish embryo development: the effects of lipophilicity and DMSO. Birth Defects Res B Dev Reprod Toxicol 2015;104:253–72.
  • Padilla S, Corum D, Padnos B, et al. Zebrafish developmental screening of the ToxCast™ Phase I chemical library. Reprod Toxicol 2012;33:174–87.
  • Hallare A, Nagel K, Köhler HR, Triebskorn R. Comparative embryotoxicity and proteotoxicity of three carrier solvents to zebrafish (Danio rerio) embryos. Ecotoxicol Environ Saf 2006;63:378–88.
  • Aspatwar A, Hammaren M, Parikka M, et al. In vitro inhibition of Mycobacterium tuberculosis β-carbonic anhydrase 3 with mono- and dithiocarbamates and evaluation of their toxicity using zebrafish developing embryos. J Enzyme Inhib Med Chem 2020;35:65–71.
  • Moreira J, Ribeiro D, Silva PMA, et al. New alkoxy flavone derivatives targeting caspases: synthesis and antitumor activity evaluation. Molecules 2019;24:129.