2,463
Views
5
CrossRef citations to date
0
Altmetric
Research Paper

New cyclopentaquinoline and 3,5-dichlorobenzoic acid hybrids with neuroprotection against oxidative stress for the treatment of Alzheimer’s disease

, , , , , , ORCID Icon, , , , , , & show all
Article: 2158822 | Received 23 May 2022, Accepted 12 Dec 2022, Published online: 11 Jan 2023

References

  • Padurariu M, Ciobica A, Lefter R, Serban IL, Stefanescu C, Chirita R. The oxidative stress hypothesis in Alzheimer’s disease. Psychiatr Danub. 2013;25(4):401–409.
  • Soto C. Plaque busters: strategies to inhibit amyloid formation in Alzheimer’s disease. Mol Med Today. 1999;5(8):343–350.
  • Kubis AM, Janusz M. Alzheimer’s disease: new prospects in therapy and applied experimental models. Postepy Hig Med Dosw. 2008;62(:372–392.
  • Chen SY, Chen Y, Li YP, Chen SH, Tan JH, Ou TM, Gu LQ, Huang ZS. Design, synthesis, and biological evaluation of curcumin analogues as multifunctional agents for the treatment of Alzheimer’s disease. Bioorg Med Chem. 2011;19(18):5596–5604.
  • Silva D, Chioua M, Samadi A, Agostinho P, Garcao P, Lajarin-Cuesta R, de los Rios C, Iriepa I, Moraleda I, Gonzalez-Lafuente L, et al. Synthesis, pharmacological assessment, and molecular modeling of acetylcholinesterase/butyrylcholinesterase inhibitors: effect against amyloid-beta-induced neurotoxicity. ACS Chem Neurosci. 2013;4(4):547–565.
  • Mikiciuk-Olasik E, Szymański P, Zurek E. Diagnostics and therapy of Alzheimer’s disease. Indian J Exp Biol. 2007;45(4):315–325.
  • Li SY, Wang XB, Xie SS, Jiang N, Wang KDG, Yao HQ, Sun HB, Kong LY. Multifunctional tacrine flavonoid hybrids with cholinergic, beta-amyloid-reducing, and metal chelating properties for the treatment of Alzheimer’s disease. Eur J Med Chem. 2013;69(:632–646.
  • Zhao Y, Zhao BL. Oxidative stress and the pathogenesis of Alzheimer’s disease. Oxid Med Cell Longev. 2013;2013(10):316523.
  • Olsson F, Schmidt S, Althoff V, Munter LM, Jin SB, Rosqvist S, Lendahl U, Multhaup G, Lundkvist J. Characterization of intermediate steps in amyloid beta (a beta) production under near-native conditions. J Biol Chem. 2014;289(3):1540–1550.
  • Brion JP, Couck AM, Passareiro E, Flament-Durand J. Neurofibrillary tangles of Alzheimer’s disease: an immunohistochemical study. J Submicrosc Cytol. 1985;17(1):89–96.
  • Weingarten MD, Lockwood AH, Hwo SY, Kirschner MW. A protein factor essential for microtubule assembly. Proc Natl Acad Sci U S A. 1975;72(5):1858–1862.
  • Ramachandran G, Udgaonkar JB. Mechanistic studies unravel the complexity inherent in tau aggregation leading to Alzheimer’s disease and the tauopathies. Biochemistry. 2013;52(24):4107–4126.
  • Morris M, Maeda S, Vossel K, Mucke L. The many faces of tau. Neuron. 2011;70(3):410–426.
  • Contestabile A. The history of the cholinergic hypothesis. Behav Brain Res. 2011;221(2):334–340.
  • Mohamed T, Rao PPN. Alzheimer’s disease: emerging trends in small molecule therapies. Curr Med Chem. 2011;18(28):4299–4320.
  • Perl DP. Neuropathology of Alzheimer’s disease. Mt Sinai J Med. 2010;77(1):32–42.
  • Reid GA, Darvesh S. Butyrylcholinesterase-knockout reduces brain deposition of fibrillar beta-amyloid in an Alzheimer mouse model. Neuroscience. 2015;298(:424–435.
  • Chen X, Wehle S, Kuzmanovic N, Merget B, Holzgrabe U, Konig B, Sotriffer CA, Decker M. Acetylcholinesterase inhibitors with photoswitchable inhibition of beta-amyloid aggregation. ACS Chem Neurosci. 2014;5(5):377–389.
  • Meng Q, Ru JH, Zhang GL, Shen C, Schmitmeier S, Bader A. Re-evaluation of tacrine hepatotoxicity using gel entrapped hepatocytes. Toxicol Lett. 2007;168(2):140–147.
  • Wu WY, Dai YC, Li NG, Dong ZX, Gu T, Shi ZH, Xue X, Tang YP, Duan JA. Novel multitarget-directed tacrine derivatives as potential candidates for the treatment of Alzheimer’s disease. J Enzyme Inhib Med Chem. 2017;32(1):572–587.
  • Morphy R, Kay C, Rankovic Z. From magic bullets to designed multiple ligands. Drug Discov Today. 2004;9(15):641–651.
  • Spilovska K, Korabecny J, Nepovimova E, Dolezal R, Mezeiova E, Soukup O, Kuca K. Multitarget tacrine hybrids with neuroprotective properties to confront Alzheimer’s disease. Curr Top Med Chem. 2017;17(9):1006–1026.
  • Bajda M, Jończyk J, Malawska B, Czarnecka K, Girek M, Olszewska P, Sikora J, Mikiciuk-Olasik E, Skibiński R, Gumieniczek A, et al. Synthesis, biological evaluation and molecular modeling of new tetrahydroacridine derivatives as potential multifunctional agents for the treatment of Alzheimer’s disease. Bioorg Med Chem. 2015;23(17):5610–5618.
  • Czarnecka K, Szymański P, Girek M, Mikiciuk-Olasik E, Skibiński R, Kabziński J, Majsterek I, Malawska B, Jończyk J, Bajda M. Tetrahydroacridine derivatives with fluorobenzoic acid moiety as multifunctional agents for Alzheimer’s disease treatment. Bioorg Chem. 2017;72(:315–322.
  • Skibiński R, Czarnecka K, Girek M, Bilichowski I, Chufarova N, Mikiciuk-Olasik E, Szymański P. Novel tetrahydroacridine derivatives with iodobenzoic acid moiety as multifunctional acetylcholinesterase inhibitors. Chem Biol Drug Des. 2018;91(2):505–518.
  • Souza MTD, Almeida J, Araujo AAD, Duarte MC, Gelain DP, Moreira JCF, dos Santos MRV, Quintans LJ. Structure-activity relationship of terpenes with anti-inflammatory profile – a systematic review. Basic Clin Pharmacol Toxicol. 2014;115(3):244–256.
  • Salvamani S, Gunasekaran B, Shukor MY, Shaharuddin NA, Sabullah MK, Ahmad SA. Anti-HMG-CoA reductase, antioxidant, and anti-inflammatory activities of Amaranthus viridis leaf extract as a potential treatment for hypercholesterolemia. Evid Based Complement Altern Med. 2016;2016:1–10.
  • Causier B, Davies B. Analysing protein-protein interactions with the yeast two-hybrid system. Plant Mol Biol. 2002;50(6):855–870.
  • Hamdi A, Colas P. Yeast two-hybrid methods and their applications in drug discovery. Trends Pharmacol Sci. 2012;33(2):109–118.
  • Baker K, Sengupta D, Salazar-Jimenez G, Cornish VW. An optimized dexamethasone-methotrexate yeast 3-hybrid system for high-throughput screening of small molecule-protein interactions. Anal Biochem. 2003;315(1):134–137.
  • Cottier S, Monig T, Wang ZM, Svoboda J, Boland W, Kaiser M, Kombrink E. The yeast three-hybrid system as an experimental platform to identify proteins interacting with small signaling molecules in plant cells: potential and limitations. Front Plant Sci. 2011;2:101.
  • Henthorn DC, Jaxa-Chamiec AA, Meldrum E. A GAL4-based yeast three-hybrid system for the identification of small molecule-target protein interactions. Biochem Pharmacol. 2002;63(9):1619–1628.
  • Licitra EJ, Liu JO. A three-hybrid system for detecting small ligand-protein receptor interactions. Proc Natl Acad Sci U S A. 1996;93(23):12817–12821.
  • Jabir NR, Rehman MT, Tabrez S, Alserihi RF, AlAjmi MF, Khan MS, Husain FM, Ahmed BA. Identification of butyrylcholinesterase and monoamine oxidase b targeted ligands and their putative application in Alzheimer’s treatment: A computational strategy. Curr Pharm Des. 2021;27(20):2425–2434.
  • Jabir NR, Shakil S, Tabrez S, Khan MS, Rehman MT, Ahmed BA. In silico screening of glycogen synthase kinase-3 beta targeted ligands against acetylcholinesterase and its probable relevance to Alzheimer’s disease. J Biomol Struct Dyn. 2021;39(14):5083–5092.
  • Czarnecka K, Girek M, Wójtowicz P, Kręcisz P, Skibiński R, Jończyk J, Łątka K, Bajda M, Walczak A, Galita G, et al. New tetrahydroacridine hybrids with dichlorobenzoic acid moiety demonstrating multifunctional potential for the treatment of Alzheimer’s disease. IJMS. 2020;21(11):3765.
  • Szymanski P, Markowicz M, Bajda M, Malawska B, Mikiciuk-Olasik E. Synthesis and biological activity of new 2,3-dihydro-1h-cyclopenta b quinoline derivatives as acetylcholinesterase inhibitors. LDDD. 2012;9(7):645–654.
  • Ellman GL, Courtney KD, Andres V, Feather-Stone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961;7(2):88–95.
  • Czarnecka K, Girek M, Kręcisz P, Skibiński R, Łątka K, Jończyk J, Bajda M, Kabziński J, Majsterek I, Szymczyk P, et al. Discovery of new cyclopentaquinoline analogues as multifunctional agents for the treatment of Alzheimer’s disease. IJMS. 2019;20(3):498.
  • Plumb JA. Cell sensitivity assays. In: Brown R, Böger-Brown U, editors. Cytotoxic drug resistance mechanisms. Totowa (NJ): Humana Press; 1999.
  • González-Muñoz GC, Arce MP, López B, Pérez C, Romero A, del Barrio L, Martín-de-Saavedra MD, Egea J, León R, Villarroya M, et al. N-acylaminophenothiazines: neuroprotective agents displaying multifunctional activities for a potential treatment of Alzheimer’s disease. Eur J Med Chem. 2011;46(6):2224–2235.
  • Romero A, Egea J, González-Muñoz GC, Martín de Saavedra MD, del Barrio L, Rodríguez-Franco MI, Conde S, López MG, Villarroya M, de los Ríos C. ITH12410/SC058: a new neuroprotective compound with potential in the treatment of Alzheimer’s disease. ACS Chem Neurosci. 2014;5(9):770–775.
  • United States Pharmacopeial Convention. USP XXII-NF XVII. Rockville (MD): United States Pharmacopeial Convention, Inc.
  • Piwowarski JP, Kiss AK, Kozłowska-Wojciechowska M. Anti-hyaluronidase and anti-elastase activity screening of tannin-rich plant materials used in traditional polish medicine for external treatment of diseases with inflammatory background. J Ethnopharmacol. 2011;137(1):937–941.
  • Michel P, Owczarek A, Matczak M, Kosno M, Szymański P, Mikiciuk-Olasik E, Kilanowicz A, Wesołowski W, Olszewska M. Metabolite profiling of eastern teaberry (Gaultheria procumbens L.) lipophilic leaf extracts with hyaluronidase and lipoxygenase inhibitory activity. Molecules. 2017;22(3):412.
  • Mao F, Li JH, Wei H, Huang L, Li XS. Tacrine-propargylamine derivatives with improved acetylcholinesterase inhibitory activity and lower hepatotoxicity as a potential lead compound for the treatment of Alzheimer’s disease. J Enzyme Inhib Med Chem. 2015;30(6):995–1001.
  • Chen XY, Zenger K, Lupp A, Kling B, Heilmann J, Fleck C, Kraus B, Decker M. Tacrine-silibinin codrug shows neuro- and hepato protective effects in vitro and pro-cognitive and hepatoprotective effects in vivo. J Med Chem. 2012;55(11):5231–5242.
  • OECD. No. 432: acute oral toxicity – acute toxic class method. OECD guidelines for the testing of chemicals. Paris: OECD; 2002.
  • Espargaro A, Ginex T, Vadell MD, Busquets MA, Estelrich J, Munoz-Torrero D, Luque FJ, Sabate R. Combined in vitro cell-based/in silico screening of naturally occurring flavonoids and phenolic compounds as potential anti-Alzheimer drugs. J Nat Prod. 2017;80(2):278–289.
  • Pouplana S, Espargaro A, Galdeano C, Viayna E, Sola I, Ventura S, Munoz-Torrero D, Sabate R. Thioflavin-S staining of bacterial inclusion bodies for the fast, simple, and inexpensive screening of amyloid aggregation inhibitors. Curr Med Chem. 2014;21(9):1152–1159.
  • Espargaro A, Medina A, Di Pietro O, Munoz-Torrero D, Sabate R. Ultra rapid in vivo screening for anti-Alzheimer anti-amyloid drugs. Sci Rep. 2016;6(8):23349.
  • Espargaro A, Pont C, Gamez P, Munoz-Torrero D, Sabate R. Amyloid pan-inhibitors: one family of compounds to cope with all conformational diseases. ACS Chem Neurosci. 2019;10(3):1311–1317.
  • Hansch C, Leo A, Hoekman D. Exploring QSAR: hydrophobic, electronic, and steric constants. Washington (DC): American Chemical Society; 1995.
  • Sangster J. Octanol-water partition coefficients: fundamentals and physical chemistry. Wiley series in solutions chemistry. New York: Wiley; 1997.
  • Perrin DD. Dissociation constants of organic bases in aqueous solution. IUPAC chemical data series: Supplement 1972. London: Butterworths; 1972.
  • O'Neil MJ. The Merck index: an encyclopedia of chemicals, drugs, and biologicals. 14th ed. Whitehouse Station (NJ): Merck and Co., Inc.; 2006.
  • Liang C, Qiao JQ, Lian HZ. Determination of reversed-phase high performance liquid chromatography based octanol-water partition coefficients for neutral and ionizable compounds: methodology evaluation. J Chromatogr A. 2017;1528:25–34.
  • Newhouse K, Hsuan SL, Chang SH, Cai BB, Wang YP, Xia ZG. Rotenone-induced apoptosis is mediated by p38 and JNK map kinases in human dopaminergic SH-SY5Y cells. Toxicol Sci. 2004;79(1):137–146.
  • Shutske GM, Pierrat FA, Cornfeldt ML, Szewczak MR, Huger FP, Bores GM, Haroutunian V, Davis KL. (+-)9-amino-1,2,3,4-tetrahydroacridin-1-ol. A potential Alzheimer’s disease therapeutic of low toxicity. J Med Chem. 1988;31(7):1278–1279.
  • Banerjee P, Eckert AO, Schrey AK, Preissner R. Protox-II: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 2018;46(W1):W257–W263.
  • de Felipe KS, Carter BT, Althoff EA, Cornish VW. Correlation between ligand-receptor affinity and the transcription readout in a yeast three-hybrid system. Biochemistry. 2004;43(32):10353–10363.
  • Gallagher SS, Miller LW, Cornish VW. An orthogonal dexamethasone-trimethoprim yeast three-hybrid system. Anal Biochem. 2007;363(1):160–162.
  • Musil K, Florianova V, Bucek P, Dohnal V, Kuca K, Musilek K. Development and validation of a Fia/UV-Vis method for pK(a) determination of oxime based acetylcholinesterase reactivators. J Pharm Biomed Anal. 2016;117(:240–246.