1,201
Views
6
CrossRef citations to date
0
Altmetric
Research Paper

Potent carbonic anhydrase I, II, IX and XII inhibition activity of novel primary benzenesulfonamides incorporating bis-ureido moieties

, , , , & ORCID Icon
Article: 2185762 | Received 30 Jan 2023, Accepted 22 Feb 2023, Published online: 02 Mar 2023

References

  • Alterio V, Di Fiore A, D'Ambrosio K, Supuran CT, De Simone G. Multiple binding modes of inhibitors to carbonic anhydrases: how to design specific drugs targeting 15 different isoforms? Chem Rev 2012;112(8):4421–4468.
  • Neri D, Supuran CT. Interfering with pH regulation in tumours as a therapeutic strategy. Nat Rev Drug Discov. 2011;10(10):767–777.
  • Supuran CT. Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. Nat Rev Drug Discov. 2008;7:168–181.
  • Supuran CT. Advances in structure-based drug discovery of carbonic anhydrase inhibitors. Expert Opin. Drug Discov. 2017;12(1):61–88.
  • Supuran CT, Scozzafava A. Carbonic anhydrase inhibitors and their therapeutic potential. Expert Opin Ther Pat. 2000;10:575–600.
  • Supuran CT. Carbonic anhydrase inhibitors and their potential in a range of therapeutic areas. Expert Opin Ther Pat. 2018;28:709–712.
  • Nocentini A, Supuran CT. Carbonic anhydrase inhibitors as antitumor/antimetastatic agents: a patent review (2008-2018). Expert Opin Ther Pat. 2018;28:729–740.
  • Shabana AM, Mondal UK, Alam R, et al. pH-Senstive multiligand gold nanoplatform targeting carbonic anhydrase IX enhances the delivery of Doxorubicin to hypoxic tumor spheroids and overcomes the hypoxia-induced chemoresistance. ACS Appl Mater Interfaces. 2018;10:17792–17808.
  • Akocak S, Ilies MA. Next-Generation Primary Sulfonamide Carbonic Anhydrase Inhibitors. In: Supuran CT, Cappasso C, editors. Targeting carbonic anhydrases. London: Future Science; 2014. p. 35–51.
  • Supuran CT. How many carbonic anhydrase inhibition mechanisms exist? J Enzym Inhib Med Chem. 2016;31(3):345–360.
  • Zamanova S, Shabana AM, Mondal UK, Ilies MA. Carbonic anhydrase as disease markers. Expert Opin Ther Targets. 2019;29:509–533.
  • Lou Y, McDonald PC, Oloumi A, et al. Targeting tumor hypoxia: suppression of breast tumor growth and metastasis by novel carbonic anhydrase IX inhibitors. Cancer Res. 2011;71(9):3364–3376.
  • Pacchiano F, Aggarwal M, Avvaru BS, Robbins AH, Scozzafava A, McKenna R, Supuran CT. Selective hydrophobic pocket binding observed within the carbonic anhydrase II active site accommodate different 4-substituted-ureido-benzenesulfonamides and correlate to inhibitor potency. Chem Commun (Camb)). 2010;46(44):8371–8373.
  • Pacchiano F, Carta F, McDonald PC, et al. Ureido-substituted benzenesulfonamides potently inhibit carbonic anhydrase IX and show antimetastatic activity in a model of breast cancer metastasis. J Med Chem. 2011;54(6):1896–1902.
  • Supuran CT, Capasso C. The η-class carbonic anhydrases as drug targets for antimalarial agents. Expert Opin Ther Targets. 2015;19:551–563.
  • Capasso C, Supuran CT. Bacterial, fungal and protozoan carbonic anhydrases as drug targets. Expert Opin Ther Targets. 2015;19:1689–1704.
  • Supuran CT, Capasso C. Biomedical applications of prokaryotic carbonic anhydrases. Expert Opin Ther Pat. 2018;28:745–754.
  • Akocak S, Supuran CT. Activation of α-, β-, γ- δ-, ζ- and η- class of carbonic anhydrases with amines and amino acids: a review. J Enzy Inhib Med Chem. 2019;34(1):1652–1659.
  • Del Prete S, Vullo D, Scozzafava A, et al. Cloning, characterization and anion inhibition study of the δ-class carbonic anhydrase (TweCA) from the marine diatom Thalassiosira weissflogii. Bioorg Med Chem. 2014;22:531–537.
  • Vullo D, Del Prete S, Osman SM, et al. Sulfonamide inhibition studies of the δ-carbonic anhydrase from the diatom Thalassiosira weissflogii. Bioorg Med Chem Lett. 2014;24:275–279.
  • Del Prete S, Vullo D, Del Luca V, et al. Biochemical characterization of the δ-carbonic anhydrase from the marine diatom Thalassiosira weissflogii. TweCA. J Enzy Inhib Med Chem. 2014;29:906–911.
  • Supuran CT, Capasso C. An overview of the bacterial carbonic anhydrases. Metabolites. 2017;7:56.
  • Del Prete S, Vullo D, Fisher GM, et al. Discovery of new family of carbonic anhydrases in the malaria pathogen Plasmodium falciparum- the η-carbonic anhydrases. Bioorg Med Chem. 2014;24:4389–4396.
  • De Simone G, Di Fiore A, Capasso C, Supuran CT. The zinc coordination pattern in the η-carbonic anhydrase from Plasmodium falciparum is different from all other carbonic anhydrase genetic families. Bioorg Med Chem Lett. 2015;25:1385–1389.
  • Supuran CT, Scozzafava A, Jurca BC, Ilies MA. Carbonic anhydrase inhibitors - Part 49: Synthesis of substituted ureido and thioureido derivatives of aromatic/heterocyclic sulfonamides with increased affinities for isozyme I. Eur J Med Chem. 1998;33:83–93.
  • Mishra CB, Kumari S, Angeli A, et al. Design, synthesis and biological evaluation of N-(5-methyl-isoxazol-3-yl/1,3,4-thiadiazol-2-yl)-4-(3-substitutedpheylureido) benzenesulfonamides as human carbonic anhydrase isoenzymes I, II, VII and XII inhibitors. J Enzy Inhib Med Chem. 2016;31(52):174–179.
  • Moeker J, Peat TS, Bornaghi LF, Vullo D, Supuran CT, Poulsen S-A. Cyclic secondary sulfonamides: unusually good inhibitors of cancer-related carbonic anhydrase enzymes. J Med Chem. 2014;57(8):3522–3531.
  • Akocak S, Alam MR, Shabana AM, et al. PEGylated Bis-Sulfonamide Carbonic Anhydrase Inhibitors Can Efficiently Control the Growth of Several Carbonic Anhydrase IX-Expressing Carcinomas. J Med Chem. 2016;59(10):5077–5088.
  • Akocak S, Lolak N, Nocentini A, et al. Synthesis and biological evaluation of novel aromatic and heterocyclic bis-sulfonamide Schiff bases as carbonic anhydrase I, II,VII, and IX inhibitors. Bioorg Med Chem. 2017;25:3093–3097.
  • Lolak N, Akocak S, Turkes C, et al. Synthesis, characterization,inhibition effects, and molecular docking studies as acetylcholinesterase, α-glycosidase, and carbonic anhydrase inhibitors of novel benzenesulfonamides incorporating 1,3,5-triazine structural motifs. Bioorg Chem. 2019;100:103897.
  • Khalifah RG. The carbon dioxide hydration activity of carbonic anhydrase. I. Stop-flow kinetic studies on the native human isoenzymes B and C. J Biol Chem. 1971;246(8):2561–2573.
  • Draghici B, Vullo D, Akocak S, Walker EA, Supuran CT, Ilies MA. Ethylene bis-imidazoles are highly potent and selective activators for isozymes VA and VII of carbonic anhydrase, with a potential nootropic effect. Chem Commun. 2014;50(45):5980–5983.
  • Akocak S, Lolak N, Vullo D, Durgun M, Supuran CT. Synthesis and biological evaluation of histamine Schiff bases as carbonic anhydrase I, II, IV, VII and IX activators. J Enzy Inhib Med Chem. 2017;32:1305–1312.
  • Akocak S, Lolak N, Bua S, et al. α-Carbonic anhydrases are strongly activated by spinaceamine derivatives. Bioorg Med Chem. 2019;27:800–804.
  • Akocak S, Lolak N, Bua S, Nocentini A, Supuran CT. Activation of human α-carbonic anhydrase isoforms I, II, IV, and VII with bis-histamine Schiff bases and bis-spinaceamine substituted derivatives. J Enzy Inhib Med Chem. 2019;34(1):1193–1198.
  • Akocak S, Lolak N, Bua S, Turel I, Supuran CT. Synthesis and biological evaluation of novel N,N′-Diaryl Cyanoguanidines acting as potent and selective carbonic anhydrase II inhibitors. Bioorg Chem. 2018;77:245–251.
  • Lolak N, Akocak S, Bua S, Supuran CT. Design, synthesis and biological evaluation of ureido benzenesulfonamides incorporating 1,3,5-triazine moieties as potent carbonic anhydrase IX inhibitors. Bioorg Chem. 2019;82:117–122.
  • Lolak N, Akocak S, Bua S, et al. Discovery of new ureido benzenesulfonamides incorporating 1,3,5-triazine moieties as carbonic anhydrase I, II, IX and inhibitors. Bioorg Med Chem. 2019;27(8):1588–1594.
  • Lolak N, Akocak S, Bua S, Koca M, Supuran CT. Design and synthesis of novel 1,3-diaryltriazene-substituted sulfonamides as potent and selective carbonic anhydrase II inhibitors. Bioorg Chem. 2018;77:542–547.
  • Akocak S, Lolak N, Bua S, Supuran CT. Discovery of novel 1,3-diaryltriazene sulfonamides as carbonic anhydrase I, II, VII and IX inhibitors. J Enzy Inhib Med Chem. 2018;33:1575–1580.
  • Kucukbay H, Gonul Z, Kucukbay FZ, et al. Synthesis of new 7-amino-3,4-dihydroquinolin-2(1H)-one-peptide derivatives and their carbonic anhydrase enzyme inhibition, antioxidant, and cytotoxic activities. Arch Pharm. 2021;354(11):2100122.
  • Kucukbay H, Parladi FM, Kucukbay FZ, et al. Synthesis, antioxidant and carbonic anhydrase inhibitory properties of monopetide-anthraquinone conjugates. Org Commun. 2021;14(3):255–269.
  • Onyilmaz M, Koca M, Bonardi A, Degirmenci M, Supuran CT. Isocoumarins: a new class of selective carbonic anhydrase IX and XII inhibitors. J Enzy Inhib Med Chem. 2022;37(1):743–748.
  • Durgun M, Turkes C, Isik M, et al. Synthesis, characterisation, biological evaluation and in silico studies of sulphonamide Schiff bases. J Enzy Inhib Med Chem. 2020;35(1):950–962.
  • Ilies MA, Vullo D, Pastorek J, et al. Carbonic anhydrase inhibitors. Inhibition of tumor-associated isozyme IX by halogenosulfanilamide and halogenophenylaminobenzolamide derivatives. J Med Chem. 2003;46(11):2187–2196.
  • Larcher A, Nocentini A, Supuran CT, et al. Bis-benzoxaboroles: Design, synthesis, and biological evaluation as carbonic anhydrase inhibitors. ACS Med Chem Lett. 2019;10(8):1205–1210.
  • Mondal UK, Doroba K, Shabana AM, et al. PEG linker length strongly affects tumor cell killing by PEGylated carbonic anhydrase inhibitors in hypoxic carcinomas expressing carbonic anhydrase IX. Int J Mol Sci. 2021;22(3):1120.
  • Kurt BZ, Dag A, Dogan B, et al. Synthesis, biological activity and multiscale molecular modeling studies of bis-coumarins as selective carbonic anhydrase IX and XII inhibitors with effective cytotoxicity against hepatocellular carcinoma. Bioorg Chem. 2019;87:838–850.
  • Carta F, Dumy P, Supuran CT, Winum JY. Multivalent carbonic anhydrase inhibitors. Int J Mol Sci. 2019;20(21):5352.
  • Lolak N, Akocak S, Durgun M, et al. Novel bis‑ureido‑substituted sulfaguanidines and sulfisoxazoles as carbonic anhydrase and acetylcholinesterase inhibitors. Mol Divers. 2022:1–15.