1,927
Views
3
CrossRef citations to date
0
Altmetric
Research Paper

Identification of new 4-(6-oxopyridazin-1-yl)benzenesulfonamides as multi-target anti-inflammatory agents targeting carbonic anhydrase, COX-2 and 5-LOX enzymes: synthesis, biological evaluations and modelling insights

, , , , , , , , , , ORCID Icon, ORCID Icon, ORCID Icon & show all
Article: 2201407 | Received 18 Mar 2023, Accepted 04 Apr 2023, Published online: 20 Apr 2023

References

  • Supuran CT. Structure and function of carbonic anhydrases. Biochem J. 2016;473(14):2023–2032.
  • Nocentini A, Supuran CT, Capasso C. An overview on the recently discovered iota-carbonic anhydrases. J Enzyme Inhib Med Chem. 2021;36(1):1988–1995.
  • Supuran CT. Carbonic anhydrases-an overview. Curr Pharm Des. 2008; 14(7):603–614.
  • Eldehna WM, Nocentini A, Elsayed ZM, Al-Warhi T, Aljaeed N, Alotaibi OJ, Al-Sanea MM, Abdel-Aziz HA, Supuran CT. Benzofuran-based carboxylic acids as carbonic anhydrase inhibitors and antiproliferative agents against breast cancer. ACS Med Chem Lett. 2020;11(5):1022–1027.
  • Angeli A, Carta F, Nocentini A, Winum J-Y, Zalubovskis R, Akdemir A, Onnis V, Eldehna WM, Capasso C, Simone GD, et al. Carbonic anhydrase inhibitors targeting metabolism and tumor microenvironment. Metabolites. 2020;10(10):412.
  • Supuran CT. How many carbonic anhydrase inhibition mechanisms exist? J Enzyme Inhib Med Chem. 2016;31(3):345–360.
  • Tanc M, Carta F, Scozzafava A, Supuran CT. α-Carbonic anhydrases possess thioesterase activity. ACS Med Chem Lett. 2015;6(3):292–295.
  • Supuran CT. Carbonic anhydrase inhibitors: An update on experimental agents for the treatment and imaging of hypoxic tumors. Expert Opin Investig. 2021;1–12.
  • Farr M, Garvey K, Bold AM, Kendall MJ, Bacon PA. Significance of the hydrogen ion concentration in synovial fluid in rheumatoid arthritis. Clin. Exp. Rheumatol. 1985;3:99–104.
  • Steen KH, Steen AE, Reeh PW. A dominant role of acid pH in inflammatory excitation and sensitization of nociceptors in rat skin, in vitro. J Neurosci. 1995;15(5 Pt 2):3982–3989.
  • Chang X, Han J, Zhao Y, Yan X, Sun S, Cui Y. Increased expression of carbonic anhydrase I in the synovium of patients with ankylosing spondylitis. BMC Musculoskelet Disord. 2010;11(1):1–11.
  • Zheng Y, Wang L, Zhang W, Xu H, Chang X. Transgenic mice over-expressing carbonic anhydrase I showed aggravated joint inflammation and tissue destruction. BMC Musculoskelet Disord. 2012;13(1):19.
  • Liu C, Wei Y, Wang J, Pi L, Huang J, Wang P. Carbonic anhydrases III and IV autoantibodies in rheumatoid arthritis, systemic lupus erythematosus, diabetes, hypertensive renal disease, and heart failure. Clin Dev Immunol. 2012;2012:354594.
  • Margheri F, Ceruso M, Carta F, Laurenzana A, Maggi L, Lazzeri S, Simonini G, Annunziato F, Del Rosso M, Supuran CT, et al. Overexpression of the transmembrane carbonic anhydrase isoforms IX and XII in the inflamed synovium. J Enzyme Inhib Med Chem. 2016;31(sup4):60–63.
  • Greene ER, Huang S, Serhan CN, Panigrahy D. Regulation of inflammation in cancer by eicosanoids. Prostaglandins Other Lipid Mediat. 2011;96(1-4):27–36.
  • Gökşen US, Kelekçi NG. A new avenue in anti-inflammatory therapy: Dual inhibitors of cyclooxygenase and 5-lipoxygenase. Hacettepe Univ Eczacilik Fak Derg. 2010;1:81–118.
  • P JJ, Manju SL, Ethiraj KR, Elias G. Safer anti-inflammatory therapy through dual COX-2/5-LOX inhibitors: A structure-based approach. Eur J Pharm Sci. 2018;121:356–381.
  • Koeberle A, Werz O. Multi-target approach for natural products in inflammation. Drug Discov Today. 2014;19(12):1871–1882.
  • Meshram MA, Bhise UO, Makhal PN, Kaki VR. Synthetically-tailored and nature-derived dual COX-2/5-LOX inhibitors: Structural aspects and SAR. Eur J Med Chem. 2021;225:113804.
  • Peerzada MN, Hamel E, Bai R, Supuran CT, Azam A. Deciphering the key heterocyclic scaffolds in targeting microtubules, kinases and carbonic anhydrases for cancer drug development. Pharmacol Ther. 2021;225:107860.
  • Lee C, Yang J, Kang S, Seo H, Kim C, Kim S, Park M, Chang H, Schmidt W, Cho J, et al. CG100649, a novel dual-acting COX-2 and carbonic anhydrase inhibitor: Preclinical pharmacology. J. Pain. 2008;9(4):5.
  • Singh O, Kakularam KR, Reddanna P, Aparoy P. Understanding the dual inhibition of COX-2 and carbonic anhydrase-II by Celecoxib and CG100649 using density functional theory calculations and other molecular modelling approaches. Protein Pept Lett. 2015;22(10):903–912.
  • Kim HT, Cha H, Hwang KY. Structural insight into the inhibition of carbonic anhydrase by the COX-2-selective inhibitor polmacoxib (CG100649). Biochem Biophys Res Commun. 2016; 478(1):1–6.
  • Hirankarn S, Barrett JS, Alamuddin N, FitzGerald GA, Skarke C. GCG100649, A novel cyclooxygenase-2 Inhibitor, exhibits a drug disposition profile in healthy volunteers compatible with high affinity to carbonic anhydrase-I/II: Preliminary dose-exposure relationships to define clinical development strategies. Clin Pharmacol Drug Dev. 2013; 2(4):379–386.
  • Weber A, Casini A, Heine A, Kuhn D, Supuran CT, Scozzafava A, Klebe G. Unexpected nanomolar inhibition of carbonic anhydrase by COX-2-selective celecoxib: new pharmacological opportunities due to related binding site recognition. J Med Chem. 2004;47(3):550–557.
  • Fiore AD, Pedone C, D'Ambrosio K, Scozzafava A, De Simone G, Claudiu TS. Carbonic anhydrase inhibitors: valdecoxib binds to a different active site region of the human isoform II as compared to the structurally related cyclooxygenase II ‘selective’ inhibitor celecoxib. Bioorg Med Chem Lett. 2006;16(2):437–442.
  • Bua S, Di Cesare Mannelli L, Vullo D, Ghelardini C, Bartolucci G, Scozzafava A, Supuran CT, Carta F. Design and synthesis of novel nonsteroidal anti-Inflammatory drugs and carbonic anhydrase inhibitors hybrids (NSAIDs-CAIs) for the treatment of rheumatoid arthritis. J Med Chem. 2017;60(3):1159–1170.
  • Akhtar W, Shaquiquzzaman M, Akhter M, Verma G, Faraz Khan M, Alam MM. The therapeutic journey of pyridazinone. Eur J Med Chem. 2016;123:256–281.
  • Hassan MS, Ahmed EM, El‐Malah AA, Kassab AE. Anti‐inflammatory activity of pyridazinones: A review. Arch Pharm (Weinheim) . 2022;355(8):e2200067.
  • Singh J, Sharma D, Bansal R. Pyridazinone: an attractive lead for anti-inflammatory and analgesic drug discovery. Future Med Chem. 2017;9(1):95–127.
  • Saini M, Kumar Mehta D, Das R, Saini G. Recent advances in anti-inflammatory potential of pyridazinone derivatives. Mini Rev Med Chem. 2016;16(12):996–1012.
  • Cantini N, Schepetkin IA, Danilenko NV, Khlebnikov AI, Crocetti L, Giovannoni MP, Kirpotina LN, Quinn MT. Pyridazinones and structurally related derivatives with anti-inflammatory activity. Molecules. 2022;27(12):3749.
  • Ahmed EM, Kassab AE, El-Malah AA, Hassan MS. Synthesis and biological evaluation of pyridazinone derivatives as selective COX-2 inhibitors and potential anti-inflammatory agents. Eur J Med Chem. 2019;171:25–37.
  • Barberot C, Moniot A, Allart-Simon I, Malleret L, Yegorova T, Laronze-Cochard M, Bentaher A, Médebielle M, Bouillon J-P, Hénon E, et al. Synthesis and biological evaluation of pyridazinone derivatives as potential anti-inflammatory agents. Eur J Med Chem. 2018;146:139–146.
  • Loksha YM, Abd‐Alhaseeb MM. Synthesis and biological screening of some novel 6‐substituted 2‐alkylpyridazin‐3 (2H)‐ones as anti‐inflammatory and analgesic agents. Arch Pharm Chem Life Sci. 2020;353(3):1900295.
  • Krasavin M, Shetnev A, Baykov S, Kalinin S, Nocentini A, Sharoyko V, Poli G, Tuccinardi T, Korsakov M, Tennikova TB, et al. Pyridazinone-substituted benzenesulfonamides display potent inhibition of membrane-bound human carbonic anhydrase IX and promising antiproliferative activity against cancer cell lines. Eur J Med Chem. 2019;168:301–314.
  • Yaseen R, Ekinci D, Senturk M, Hameed AD, Ovais S, Rathore P, Samim M, Javed K, Supuran CT. Pyridazinone substituted benzenesulfonamides as potent carbonic anhydrase inhibitors. Bioorg Med Chem Lett. 2016;26(4):1337–1341.
  • Alcaro S, Bolognesi ML, García-Sosa AT, Rapposelli S. Multi-target-directed ligands (MTDL) as challenging research tools in drug discovery: From design to pharmacological evaluation. Front Chem. 2019;7:71.
  • Supuran CT. Multitargeting approaches involving carbonic anhydrase inhibitors: hybrid drugs against a variety of disorders. J Enzyme Inhib Med Chem. 2021;36(1):1702–1714.
  • Medina-Franco JL, Giulianotti MA, Welmaker GS, Houghten RA. Shifting from the single to the multitarget paradigm in drug discovery. Drug Discov Today. 2013;18(9-10):495–501.
  • Elagawany M, Ibrahim MA, Ali Ahmed HE, El-Etrawy ASh, Ghiaty A, Abdel-Samii ZK, El-Feky SA, Bajorath J. Design, synthesis, and molecular modelling of pyridazinone and phthalazinone derivatives as protein kinases inhibitors. Bioorg Med Chem Lett. 2013; 23(7):2007–2013.
  • Elagawany M, Schmitt M, Ghiaty A, El-Etrawy ASh, Ibrahim MA, Bihel F, Sbardelotto AB, Pessoa C, Nguyen TL, Hamel E, et al. Synthesis and antiproliferative effects of 5,6-disubstituted Pyridazin-3(2H)-ones designed as conformationally constrained combretastatin A-4 Analogues. Anticancer Agents Med Chem. 2013; 13(7):1133–1140.
  • Elagawany M, Ibrahim M, Ibrahim T, Al-Mahmoudy A, Moawad A, Ghoneim M, Radwan M, Panda S. Synthesis and anticancer studies of novel N-benzyl pyridazinone derivatives. LDDD. 2017;14(9):1008–1013.
  • Khalifah RG. The Carbon Dioxide Hydration Activity of Carbonic Anhydrase: I. stop-flow kinetic studies on the native human isoenzymes B and C. J Biol Chem. 1971;246(8):2561–2573.
  • Gawade S. Acetic acid induced painful endogenous infliction in writhing test on mice. J Pharmacol Pharmacother. 2012;3(4):348.
  • Winter CA, Risley EA, Nuss GW. Carrageenin-induced edema in hind paw of the rat as an assay for antiinflammatory drugs. Proc Soc Exp Biol Med. 1962;111(3):544–547.
  • Ibrahim TH, Loksha YM, Elshihawy HA, Khodeer DM, Said MM. Synthesis of Some Novel 2,6-Disubstituted Pyridazin-3(2H)-one Derivatives as Analgesic, Anti-Inflammatory, and Non-Ulcerogenic Agents. Arch Pharm Chem Life Sci. 2017;350(9):e1700093.
  • Ahmed AHH, Mohamed MF, Allam RM, Nafady A, Mohamed SK, Gouda AE, Beshr EA. Design, synthesis, and molecular docking of novel pyrazole-chalcone analogs of lonazolac as 5-LOX, iNOS and tubulin polymerization inhibitors with potential anticancer and anti-inflammatory activities. Bioorg Chem. 2022;129:106171.
  • Alkhaldi AAM, Al-Sanea MM, Nocentini A, Eldehna WM, Elsayed ZM, Bonardi A, Abo-Ashour MF, El-Damasy AK, Abdel-Maksoud MS, Al-Warhi T, et al. 3-Methylthiazolo [3,2-a] benzimidazole-benzenesulfonamide conjugates as novel carbonic anhydrase inhibitors endowed with anticancer activity: Design, synthesis, biological and molecular modeling studies. Eur J Med Chem. 2020;207:112745.
  • Shaldam M, Eldehna WM, Nocentini A, Elsayed ZM, Ibrahim TM, Salem R, El-Domany RA, Capasso C, Abdel-Aziz HA, Supuran CT. Development of novel benzofuran-based SLC-0111 analogs as selective cancer-associated carbonic anhydrase isoform IX inhibitors. Eur J Med Chem. 2021;216:113283.
  • Petreni A, Bonardi A, Lomelino C, Osman SM, ALOthman ZA, Eldehna WM, El-Haggar R, McKenna R, Nocentini A, Supuran CT. Inclusion of a 5-fluorouracil moiety in nitrogenous bases derivatives as human carbonic anhydrase IX and XII inhibitors produced a targeted action against MDA-MB-231 and T47D breast cancer cells. Eur J Med Chem. 2020;190:112112.
  • Fares M, Eladwy RA, Nocentini A, Abd El Hadi SR, Ghabbour HA, Abdel-Megeed A, Eldehna WM, Abdel-Aziz HA, Supuran CT. Synthesis of bulky-tailed sulfonamides incorporating pyrido [2, 3-d][1, 2, 4] triazolo [4, 3-a] pyrimidin-1 (5H)-yl) moieties and evaluation of their carbonic anhydrases I, II, IV and IX inhibitory effects. Bioorg Med Chem. 2017;25(7):2210–2217.
  • Al-Sanea MM, Elkamhawy A, Paik S, Bua S, Ha Lee S, Abdelgawad MA, Roh EJ, Eldehna WM, Supuran CT. Synthesis and biological evaluation of novel 3-(quinolin-4-ylamino) benzenesulfonamides as carbonic anhydrase isoforms I and II inhibitors. J Enzyme Inhib Med Chem. 2019;34(1):1457–1464.
  • Ragab MA, Eldehna WM, Nocentini A, Bonardi A, Okda HE, Elgendy B, Ibrahim TS, Abd-Alhaseeb MM, Gratteri P, Supuran CT, et al. 4-(5-Amino-pyrazol-1-yl) benzenesulfonamide derivatives as novel multi-target anti-inflammatory agents endowed with inhibitory activity against COX-2, 5-LOX and carbonic anhydrase: design, synthesis, and biological assessments. Eur J Med Chem. 2023;250:115180.
  • Ali M, Bozdag M, Farooq U, Angeli A, Carta F, Berto P, Zanotti G, Supuran CT. Benzylaminoethyureido-tailed benzenesulfonamides: design, synthesis, kinetic and X-ray investigations on human carbonic anhydrases. IJMS. 2020;21(7):2560.
  • Behnke CA, Le Trong I, Godden JW, Merritt EA, Teller DC, Bajorath J, Stenkamp RE. Atomic resolution studies of carbonic anhydrase II. Acta Crystallogr D Biol Crystallogr. 2010;66(Pt 5):616–627.
  • Leitans J, Kazaks A, Balode A, Ivanova J, Zalubovskis R, Supuran CT, Tars K. Efficient expression and crystallization system of cancer-associated carbonic anhydrase isoform IX. J Med Chem. 2015;58(22):9004–9009.
  • Whittington DA, Waheed A, Ulmasov B, Shah GN, Grubb JH, Sly WS, Christianson DW. Crystal structure of the dimeric extracellular domain of human carbonic anhydrase XII, a bitopic membrane protein overexpressed in certain cancer tumor cells. Proc Natl Acad Sci USA. 2001;98(17):9545–9550.
  • RCSB Protein Data Bank: powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. Nucleic Acids Res. 2021;49:D437–D451.