1,947
Views
8
CrossRef citations to date
0
Altmetric
Research Paper

Novel topoisomerase II/EGFR dual inhibitors: design, synthesis and docking studies of naphtho[2′,3′:4,5]thiazolo[3,2-a]pyrimidine hybrids as potential anticancer agents with apoptosis inducing activity

ORCID Icon, , , ORCID Icon, , , , , & ORCID Icon show all
Article: 2205043 | Received 13 Mar 2023, Accepted 16 Apr 2023, Published online: 11 May 2023

References

  • Thakor AS, Gambhir SS. Nanooncology: the future of cancer diagnosis and therapy. CA Cancer J Clin. 2013;63(6):395–418.
  • Petrelli A, Giordano S. From single- to multi-target drugs in cancer therapy: when a specificity becomes an advantage. Curr. Med. Chem. 2008; 15:422–432.
  • Nepali K, Sharma S, Sharma M, Bedi PMS, Dhar KL. Rational approaches, design strategies, structure activity relationship and mechanistic insights for anticancer hybrids. Eur J Med Chem. 2014;77:422–487.
  • Justine L, Hsieh D, Chan N, Hiasa H. Topoisomerases as anticancer targets. Biochem. J. 2018;47:373–398.
  • Forterre P, Gribaldo S, Gadelle D, Serre MC. Origin and evolution of DNA topoisomerases. Biochimie. 2007;89(4):427–446.
  • Nitiss JL. Targeting DNA topoisomerase II in cancer chemotherapy. Nat Rev Cancer. 2009;9(5):338–350.
  • Nandi S, Saxena AK. Exploring targets of cell wall protein synthesis and overexpression mediated drug resistance for the discovery of potential M. tb inhibitors. Curr Top Med Chem. 2021;21(21):1922–1942.
  • Champoux JJ. DNA topoisomerases: structure, function, and mechanism. Annu Rev Biochem. 2001;70:369–413.
  • McClendon AK, Osheroff N. DNA topoisomerase II, genotoxicity, and cancer, Mutat. Mutat Res. 2007;623(1-2):83–97.
  • Mueller-Planitz F, Herschlag D. DNA topoisomerase II selects DNA cleavage sites based on reactivity rather than binding affinity. Nucleic Acids Res. 2007;35(11):3764–3773.
  • Bates A, Berger J, Maxwell A. The ancestral role of ATP hydrolysis in type II topoisomerases: prevention of DNA double-strand breaks. Nucleic Acids Res. 2011;39(15):6327–6339.
  • Linka R, Porter A, Volkov A, Mielke C, Boege F, Christensen M. C-terminal regions of topoisomerase II alpha and II beta determine isoform-specific functioning of the enzymes in vivo. Nucleic Acids Res. 2007;35(11):3810–3822.
  • Stuart K. Calderwood. A critical role for topoisomerase iIb and DNA double strand breaks in transcription. Transcription. 2016;7(3):75–83.
  • Hu W, Huang X-S, Wu J-F, Yang L, Zheng Y-T, Shen Y-M, Li Z-Y, Li X. Discovery of Novel Topoisomerase II Inhibitors by Medicinal Chemistry Approaches. J Med Chem. 2018;61(20):8947–8980.
  • Chen SF, Huang NL, Lin JH, Wu CC, Wang YR, Yu YJ, Gilson MK, Chan NL. Structural insights into the gating of DNA passage by the topoisomerase II DNA-gate. Nat Commun. 2018;9(1):3085.
  • Montecucco A, Zanetta F, Biamonti G. Molecular mechanisms of etoposide. Excli J. 2015;14:95–108.
  • Farsani MR, Ganjalikhany SV. Mitoxantrone. More than Just Another Topoisomerase II Poison. Curr Cancer Drug Targets. 2017;17:657–668.
  • Yanhe L, Chen G, Ronald S, James H, et al. Humanin analog enhances the protective effect of dexrazoxane against doxorubicin-induced cardiotoxicity. Am J Physiol Heart Circ Physiol. 2018;315:634–643.
  • Chen SH, Chan NL, Hsieh TS. New Mechanistic and Functional Insights into DNA Topoisomerases. Annu Rev Biochem. 2013;82:139–170.
  • Vos SM, Tretter EM, Schmidt BH, Berger JM. All tangled up: how cells direct, manage and exploit topoisomerase function. Nat Rev Mol Cell Biol. 2011;12(12):827–841.
  • Pogorelčnik B, Perdih A, Solmajer T. Recent advances in the development of catalytic inhibitors of human DNA topoisomerase iIa as novel anticancer agents. Curr Med Chem. 2013;20(5):694–709.
  • Sabbah A, Hajjo R, Sweidan K. Review on epidermal growth factor re-odellr (EGFR) structure, signaling pathways, interactions, and recent updates of EGFR inhibitors. Curr Top Med Chem. 2020;20(10):815–834.
  • Nandi S, Dey R, Samadder A, Saxena A, Saxena AK. Natural sourced inhibitors of EGFR, PDGFR, FGFR and VEGFR mediated signaling pathways as potential anticancer agents. Curr Med Chem. 2022;29(2):212–234.
  • Stewart EL, Tan SZ, Liu G, Tsao M. Known and putative mechanisms of resistance to EGFR targeted therapies in NSCLC patients with EGFR mutations-a review. Transl. Lung Cancer Res. 2015;4:67–81.
  • Cohen MH, Johnson JR, Chen YF, Sridhara R, Pazdur R. FDA drug approval summary: erlotinib (TarcevI)) tablets. Oncologist. 2005;10(7):461–466.
  • Roskoski R. FDA-approved small molecule protein kinase inhibitors. Pharmacol Res. 2019;144:19–50.
  • Cai D, Zhang Z-H, Chen Y, Yan X-J, Zhang S-T, Zou L-J, Meng L-H, Li F, Fu B-J. Synthesis of some new thiazolo[3,2-a]pyrimidine derivatives and screening of their in vitro antibacterial and antitubercular activities. Med Chem Res. 2016;25(2):292–302.
  • Khalilpour A, Asghari S, Pourshab M. Synthesis and characterization of novel thiazolo[3,2-a]pyrimidine derivatives and evaluation of antioxidant and cytotoxic activities. codellingvers. 2019;16(5):1800563.
  • Banothu J, Khanapur M, Basavoju S, Bavantula R, Narra M, Abbagani S. Synthesis, characterization and biological evaluation of fused thiazolo[3,2-a]pyrimidine derivatives. RSC Adv. 2014;4(44):22866–22874.
  • Abdel Moty SG, Hussein MA, Abdel Aziz SA, Abou-Salim AM. Design and synthesis of some substituted thiazolo[3,2-a]pyrimidine derivatives of potential biological activities. Saudi Pharm J. 2016;24(2):119–132.
  • Tozkoparan B, Ertan M, Kelicen P, Demirdamar R. Synthesis and anti-inflammatory activities of some thiazolo[3,2-a]pyrimidine derivatives. Farmaco. 1999;54(9):588–593.
  • Mohamed SF, Abbas MH, Khalaf HS, Farghaly TA, Abd El-Shafy DN. Triazolopyrimidines and thiazolopyrimidines: synthesis, anti-HSV-1, cytotoxicity and mechanism of action. Mini Rev Med Chem. 2018;18(9):794–802.
  • Sekhar T, Thriveni P, Venkateswarlu A, Daveedu T, Peddanna K, Sainath SB. One-pot synthesis of thiazolo[3,2-a]pyrimidine derivatives, their cytotoxic evaluation and molecular docking studies. Spectrochim Acta A Mol Biomol Spectrosc. 2020;231:118056–118064.
  • Hassan GS, El-Messery SM, Abbas A. Synthesis and anticancer activity of new thiazolo[3,2-a]pyrimidines: DNA binding and molecuodellingling study. Bioorg Chem. 2017;74:41–52.
  • Nemr MT, AboulMagd AM. New fused pyrimidine derivatives with anticancer activity: Synthesis, topoisomerase II inhibition, apoptotic inducing activity and molecuodellingling study. Bioorg Chem. 2020;103:104134.
  • Gupta AK, Bhunia SS, Balaramnavar VM, Saxena AK. Pharmacophore modelling, molecular docking and virtual screening for EGFR (HER 1) tyrosine kinase inhibitors. SAR QSAR Environ Res. 2011;22(3):239–263.
  • Lin R, Johnson SG, Connolly PJ, Wetter SK, Binnun E, Hughes TV, Murray WV, Pandey NB, Moreno-Mazza SJ, Adams M, et al. Synthesis and evaluation of 2,7-diamino-thiazolo[4,5-d]pyrimidine analogues as anti-tumor epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors. Bioorg Med Chem Lett. 2009;19(8):2333–2337.,.
  • Fahmy HTY, Rostom SAF, Saudi MN, Zjawiony JK, Robins DJ. Synthesis and in vitro evaluation of the anticancer activity of novel fluorinated thiazolo[4,5-d] pyrimidines. Arch Pharm (Weinheim)). 2003;336(4-5):216–225.
  • Kumar BS, Ravi K, Verma AK, Fatima K, Hasanain M, Singh A, Sarkar J, Luqman S, Chanda D, Negi AS, et al. Synthesis of pharmacologically important naphthoquinones and anticancer activity of 2-benzyllawsone through DNA topoisomerase-II inhibition. Bioorg Med Chem. 2017;25(4):1364–1373.
  • Pereyra CE, Dantas RF, Ferreira SB, Gomes LP, Silva-Jr FP. The diverse mechanisms and anticancer potential of naphthoquinones. Cancer Cell Int. 2019;19:207.
  • Shen X-B, Wang Y, Han X-Z, Sheng L-Q, Wu F-F, Liu X. Design, synthesis and anticancer activity of naphthoquinone derivatives. J Enzyme Inhib Med Chem. 2020;35(1):773–785.
  • Schepetkin IA, Karpenko AS, Khlebnikov AI, Shibinska MO, Levandovskiy IA, Kirpotina LN, Danilenko NV, Quinn MT. Synthesis, anticancer activity, and molecuodellingling of 1,4-naphthoquinones that inhibit MKK7 and Cdc25. Eur J Med Chem. 2019;183:111719–111732.
  • Mohamady S, Gibriel AA, Ahmed MS, Hendy MS, Naguib BH. Design and novel synthetic approach supported with molecular docking and biological evidence for naphthoquinone-hydrazinotriazolothiadiazine analogs as potential anticancer inhibiting topoisomerase-IIB. Bioorg Chem. 2020;96:103641.
  • Biginelli P. Aldehyde- urea derivatives of aceto- and oxaloacetic acids. Gazz. Chim. Ital. 1893;23:360–413.
  • Kambe S, Saito K, Kishi H, Sakurai A, Midorikawa H. A one-step of 4-oxo-2-thioxopyrimidine derivatives by the ternary condensation of ethyl cyanoacetate, aldehydes, and thiourea. Synth. 1979;1979(04):287–289.
  • Mohamed MS, Awad SM, Ahmed NM. Synthesis and antimicrobial evaluation of some 6-aryl-5-cyano-2-thiouracil derivatives. Acta Pharm. 2011;61(2):171–185.
  • Rami C, Patel L, Patel CN, Parmar JP. Synthesis, antifungal activity, and QSAR studies of 1,6-dihydropyrimidine derivatives. J Pharm Bioallied Sci. 2013;5(4):277–289.
  • Mourad A, Mourad M, Jones P. Novel HDAC/tubulin dual inhibitor: design,synthesis and docking studies of α-phthalimido-chalcone hybrids as potential anticancer agents with apoptosis-inducing activity. Drug Des Devel Ther. 2020;14:3111–3130.
  • Chen J. The cell-cycle arrest and apoptotic functions of p53 in tumor initiation and progression. Cold Spring Harb Perspect Med. 2016; 6(3):a026104.
  • Shamas-Din A, Kale J, Leber B, Andrews D. Mechanisms of action of Bcl-2 family proteins. Cold Spring Harb Perspect Biol. 2013;5(4):a008714.
  • Dewson G, Kluck RM. Mechanisms by which Bak and Bax permeabilise mitochondria during apoptosis. J Cell Sci. 2009;122(Pt 16):2801–2808.
  • Zhang Z, Lapolla SM, Annis MG, Truscott M, Roberts GJ, Miao Y, Shao Y, Tan C, Peng J, Johnson AE, et al. Bcl-2 Homodimerization Involves Two Distinct Binding Surfaces, a Topographic Arrangement That Provides an Effective Mechanism for Bcl-2 to Capture Activated Bax. J Biol Chem. 2004;279(42):43920–43928.
  • Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2001;46(1-3):3–26.
  • Proudfoot JR. Drugs, leads, and drug-likeness: an analysis of some recently launched drugs. Bioorg Med Chem Lett. 2002;12(12):1647–1650.
  • Baviskar AT, Madaan C, Preet R, Mohapatra P, Jain V, Agarwal A, Guchhait SK, Kundu CN, Banerjee UC, Bharatam PV, et al. N-fused imidazoles as novel anticancer agents that inhibit catalytic activity of topoisomerase IIα and induce apoptosis in G1/S phase. J Med Chem. 2011; 54(14):5013–5030.
  • Liao JL. Molecular recognition of protein kinase binding pockets for design of potent and selective kinase inhibitors. J Med Chem. 2007;50(3):409–424.
  • Nandi S, Bagchi MC. In silico design of potent EGFR kinase inhibitors by structure based screening of combinatorial libraries. Mol Simul. 2011;37(3):196–209.
  • Durgapal J, Bisht N, Dipiksha MA, Salman M, Nandi S. QSAR and structure-based docking studies of aryl pyrido[2,3-d]pyrimidin-7(8H)-ones. An Attempt to Anticancer Drug Design. IJQSPR. 2018;3(1):43–73.
  • Nandi S, Bagchi MC. 3D-QSAR and molecular docking studies of 4-anilinoquinazoline derivatives: A rational approach to anticancer drug design. Mol Divers. 2010;14(1):27–38.