1,476
Views
1
CrossRef citations to date
0
Altmetric
Review Article

Latest advances in dual inhibitors of acetylcholinesterase and monoamine oxidase B against Alzheimer’s disease

, , , , ORCID Icon & ORCID Icon
Article: 2270781 | Received 07 Aug 2023, Accepted 27 Sep 2023, Published online: 13 Nov 2023

References

  • Gustavsson A, Norton N, Fast T, Froelich L, Georges J, Holzapfel D, Kirabali T, Krolak-Salmon P, Rossini PM, Ferretti MT, et al. Global estimates on the number of persons across the Alzheimer’s disease continuum. Alzheimers Dement. 2022;19:658–670.
  • Nichols E, Szoeke CEI, Vollset SE, Abbasi N, Abd-Allah F, Abdela J, Aichour MTE, Akinyemi RO, Alahdab F, Asgedom SW, et al. Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990–2016: A systematic analysis for the global burden of disease study 2016. Lancet Neurol. 2019;18(1):88–106.
  • Vos T, Lim SS, Abbafati C, Abbas KM, Abbasi M, Abbasifard M, Abbasi-Kangevari M, Abbastabar H, Abd-Allah F, Abdelalim A, et al. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: A systematic analysis for the global burden of disease study 2019. Lancet. 2020;396(10258):1204–1222.
  • Yang AC, Vest RT, Kern F, Lee DP, Agam M, Maat CA, Losada PM, Chen MB, Schaum N, Khoury N, et al. A human brain vascular atlas reveals diverse mediators of Alzheimer’s risk. Nature. 2022;603(7903):885–892.
  • Fang X, Zhang J, Roman RJ, Fan F. From 1901 to 2022, how far are we from truly understanding the pathogenesis of age-related dementia? Geroscience. 2022;44(3):1879–1883.
  • Zhang P, Xu S, Zhu Z, Xu J. Multi-target design strategies for the improved treatment of Alzheimer’s disease. Eur J Med Chem. 2019;176:228–247.
  • Sharma K. Cholinesterase inhibitors as Alzheimer’s therapeutics. Mol Med Rep. 2019;20(2):1479–1487.
  • Castro A, Martinez A. Targeting β-amyloid pathogenesis through acetylcholinesterase inhibitors. Curr Pharm Des. 2006;12(33):4377–4387.
  • Tripathi AC, Upadhyay S, Paliwal S, Saraf SK. Privileged scaffolds as MAO inhibitors: retrospect and prospects. Eur J Med Chem. 2018;145:445–497.
  • Mpitimpiti AN, Petzer JP, Petzer A, Jordaan JHL, Lourens ACU. Synthesis and evaluation of chromone derivatives as inhibitors of monoamine oxidase. Mol Divers. 2019;23(4):897–913.
  • Santin Y, Resta J, Parini A, Mialet-Perez J. Monoamine oxidases in age-associated diseases: new perspectives for old enzymes. Ageing Res Rev. 2021;66:101256.
  • Ramsay RR. Molecular aspects of monoamine oxidase B. Prog Neuropsychopharmacol Biol Psychiatry. 2016;69:81–89.
  • Inaba-Hasegawa K, Akao Y, Maruyama W, Naoi M. Rasagiline and selegiline, inhibitors of type B monoamine oxidase, induce type A monoamine oxidase in human SH-SY5Y cells. J Neural Transm. 2013;120(3):435–444.
  • Finberg JPM. Update on the pharmacology of selective inhibitors of MAO-A and MAO-B: focus on modulation of CNS monoamine neurotransmitter release. Pharmacol Ther. 2014;143(2):133–152.
  • Srivastava S, Ahmad R, Khare SK. Alzheimer’s disease and its treatment by different approaches: a review. Eur J Med Chem. 2021;216:113320.
  • Knez D, Sova M, Kosak U, Gobec S. Dual inhibitors of cholinesterases and monoamine oxidases for Alzheimer’s disease. Future Med Chem. 2017;9(8):811–832.
  • Cavalli A, Bolognesi ML, Minarini A, Rosini M, Tumiatti V, Recanatini M, Melchiorre C. Multi-target-directed ligands to combat neurodegenerative diseases. J Med Chem. 2008;51(3):347–372.
  • Benek O, Korabecny J, Soukup O. A perspective on multi-target drugs for Alzheimer’s disease. Trends Pharmacol Sci. 2020;41(7):434–445.
  • Mesiti F, Chavarria D, Gaspar A, Alcaro S, Borges F. The chemistry toolbox of multitarget-directed ligands for Alzheimer’s disease. Eur J Med Chem. 2019;181:111572.
  • Nozal V, García-Rubia A, Cuevas EP, Pérez C, Tosat-Bitrián C, Bartolomé F, Carro E, Ramírez D, Palomo V, Martínez A. From kinase inhibitors to multitarget ligands as powerful drug leads for Alzheimer’s disease using protein-templated synthesis. Angew Chem Int Ed Engl. 2021;60(35):19344–19354.
  • Savelieff MG, Nam G, Kang J, Lee HJ, Lee M, Lim MH. Development of multifunctional molecules as potential therapeutic candidates for Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis in the last decade. Chem Rev. 2019;119(2):1221–1322.
  • Tumiatti V, Minarini A, Bolognesi ML, Milelli A, Rosini M, Melchiorre C. Tacrine derivatives and Alzheimer’s disease. Curr Med Chem. 2010;17(17):1825–1838.
  • Li SY, Jiang N, Xie SS, Wang KDG, Wang XB, Kong LY. Design, synthesis and evaluation of novel tacrine-rhein hybrids as multifunctional agents for the treatment of Alzheimer’s disease. Org Biomol Chem. 2014;12(5):801–814.
  • Faller P. Copper and zinc binding to amyloid-β: coordination, dynamics, aggregation, reactivity and metal-ion transfer. Chembiochem. 2009;10(18):2837–2845.
  • Zhang Y, Chen LY, Yin WX, Yin J, Zhang SB, Liu CL. The chelation targeting metal-Aβ40 aggregates may lead to formation of Aβ40 oligomers. Dalton Trans. 2011;40(18):4830–4833.
  • Bolognin S, Drago D, Messori L, Zatta P. Chelation therapy for neurodegenerative diseases. Med Res Rev. 2009;29(4):547–570.
  • Rodríguez-Rodríguez C, Sánchez de Groot N, Rimola A, Alvarez-Larena A, Lloveras V, Vidal-Gancedo J, Ventura S, Vendrell J, Sodupe M, González-Duarte P. Design, selection, and characterization of thioflavin-based intercalation compounds with metal chelating properties for application in Alzheimer’s disease. J Am Chem Soc. 2009;131(4):1436–1451.
  • Takao K, Kubota Y, Kamauchi H, Sugita Y. Synthesis and biological evaluation of pyrano [4,3-b][1] benzopyranone derivatives as monoamine oxidase and cholinesterase inhibitors. Bioorg Chem. 2019;83:432–437.
  • Seenuvasan M, Vinodhini G, Malar CG, Balaji N, Kumar KS. Magnetic nanoparticles: a versatile carrier for enzymes in bio-processing sectors. IET Nanobiotechnol. 2018;12(5):535–548.
  • Zhang F, Li SH, Liu C, Fang K, Jiang YM, Zhang JY, Lan J, Zhu L, Pang HQ, Wang G. Rapid screening for acetylcholinesterase inhibitors in Selaginella doederleinii hieron by using functionalized magnetic Fe3O4 nanoparticles. Talanta. 2022;243:123284.
  • Li CH, Wang WF, Stanislas N, Yang JL. Facile preparation of fluorescent water-soluble non-conjugated polymer dots and fabricating an acetylcholinesterase biosensor. RSC Adv. 2022;12(13):7911–7921.
  • Liao CZ, Sitzmann M, Pugliese A, Nicklaus MC. Software and resources for computational medicinal chemistry. Future Med Chem. 2011;3(8):1057–1085.
  • Zhou P, Hua F. Exploration of acetylcholinesterase inhibitors from flavonoids and flavonoid glycosides. Neurochem J. 2020;14(3):251–256.
  • Gidaro MC, Astorino C, Petzer A, Carradori S, Alcaro F, Costa G, Artese A, Rafele G, Russo FM, Petzer JP, et al. Kaempferol as selective human MAO-A inhibitor: analytical detection in calabrian red wines, biological and molecular modeling studies. J Agric Food Chem. 2016;64(6):1394–1400.
  • Gogineni V, Nael MA, Chaurasiya ND, Elokely KM, McCurdy CR, Rimoldi JM, Cutler SJ, Tekwani BL, Leon F. Computationally assisted lead optimization of novel potent and selective MAO-B inhibitors. Biomedicines. 2021;9(10):1304.
  • Wang D, Chen NH, Taranto AG, Jin YT, Wen CC, Kong DX. Accelerating the identification of subtype selective inhibitors via three-dimensional biologically relevant spectrum (BRS-3D): The monoamine oxidase subtypes as a case study. Bioorg Chem. 2021;106:104503.
  • Kessel D. Photodynamic therapy: a brief history. J Clin Med. 2019;8(10):1581.
  • Paolino M, Rullo M, Maramai S, de Candia M, Pisani L, Catto M, Mugnaini C, Brizzi A, Cappelli A, Olivucci M, et al. Design, synthesis and biological evaluation of light-driven on-off multitarget AChE and MAO-B inhibitors. RSC Med Chem. 2022;13(7):873–883.
  • Farina R, Pisani L, Catto M, Nicolotti O, Gadaleta D, Denora N, Soto-Otero R, Mendez-Alvarez E, Passos CS, Muncipinto G, et al. Structure-based design and optimization of multitarget-directed 2H-chromen-2-one derivatives as potent inhibitors of monoamine oxidase B and cholinesterases. J Med Chem. 2015;58(14):5561–5578.
  • Greenblatt HM, Dvir H, Silman I, Sussman JL. Acetylcholinesterase – a multifaceted target for structure-based drug design of anticholinesterase agents for the treatment of Alzheimer’s disease. J Mol Neurosci. 2003;20(3):369–383.
  • Agatonovic-Kustrin S, Kettle C, Morton DW. A molecular approach in drug development for Alzheimer’s disease. Biomed Pharmacother. 2018;106:553–565.
  • Milczek EM, Binda C, Rovida S, Mattevi A, Edmondson DE. The ‘gating’ residues ile199 and tyr326 in human monoamine oxidase B function in substrate and inhibitor recognition. Febs J. 2011;278(24):4860–4869.
  • Hubalek F, Binda C, Li M, Herzig Y, Sterling J, Youdim MBH, Mattevi A, Edmondson DE. Inactivation of purified human recombinant monoamine oxidases A and B by rasagiline and its analogues. J Med Chem. 2004;47(7):1760–1766.
  • Zhang C, Lv Y, Bai R, Xie Y. Structural exploration of multifunctional monoamine oxidase B inhibitors as potential drug candidates against Alzheimer’s disease. Bioorg Chem. 2021;114:105070.
  • De Colibus L, Li M, Binda C, Lustig A, Edmondson DE, Mattevi A. Three-dimensional structure of human monoamine oxidase A (MAO-A): relation to the structures of rat MAO-A and human MAO-B. Proc Natl Acad Sci U S A. 2005;102(36):12684–12689.
  • Li M, Binda C, Mattevi A, Edmondson DE. Functional role of the “aromatic cage” in human monoamine oxidase B: structures and catalytic properties of tyr435 mutant proteins. Biochemistry. 2006;45(15):4775–4784.
  • Więckowska A, Szałaj N, Góral I, Bucki A, Latacz G, Kiec-Kononowicz K, Bautista-Aguilera ÒM, Romero A, Ramos E, Egea J, et al. In vitro and in silico ADME-Tox profiling and safety significance of multifunctional monoamine oxidase inhibitors targeting neurodegenerative diseases. ACS Chem Neurosci. 2020;11(22):3793–3801.
  • del Pino J, Marco-Contelles J, Lopez-Munoz F, Romero A, Ramos E. Neuroinflammation signaling modulated by ASS234, a multitarget small molecule for Alzheimer’s disease therapy. ACS Chem Neurosci. 2018;9(12):2880–2885.
  • Marco-Contelles J, Unzeta M, Bolea I, Esteban G, Ramsay RR, Romero A, Martínez-Murillo R, Carreiras MC, Ismaili L. ASS234, as a new multi-target directed propargylamine for Alzheimer’s disease therapy. Front Neurosci. 2016;10:294.
  • Youdim MBH. Site-activated multi target iron chelators with acetylcholinesterase (AChE) and monoamine oxidase (MAO) inhibitory activities for Alzheimer’s disease therapy. J Neural Transm. 2022;129(5-6):715–721.
  • Weinstock M, Kirschbaum-Slager N, Lazarovici P, Bejar C, Youdim MBH, Shoham S. Neuroprotective effects of novel cholinesterase inhibitors derived from rasagiline as potential anti-Alzheimer drugs. Ann N Y Acad Sci. 2001;939:148–161.
  • Weinstock M, Gorodetsky E, Wang RH, Gross A, Weinreb O, Youdim MBH. Limited potentiation of blood pressure response to oral tyramine by brain-selective monoamine oxidase A-B inhibitor, TV-3326 in conscious rabbits. Neuropharmacology. 2002;43(6):999–1005.
  • Xu Y-X, Wang H, Li X-K, Dong S-N, Liu W-W, Gong Q, Wang T-D-Y, Tang Y, Zhu J, Li J, et al. Discovery of novel propargylamine-modified 4-aminoalkyl imidazole substituted pyrimidinylthiourea derivatives as multifunctional agents for the treatment of Alzheimer’s disease. Eur J Med Chem. 2018;143:33–47.
  • Zhuang C, Zhang W, Sheng C, Zhang W, Xing C, Miao Z. Chalcone: A privileged structure in medicinal chemistry. Chem Rev. 2017;117(12):7762–7810.
  • Zhou B, Xing C. Diverse molecular targets for chalcones with varied bioactivities. Med Chem. 2015;5(8):388–404.
  • Oh JM, Kang M-G, Hong A, Park J-E, Kim SH, Lee JP, Baek SC, Park D, Nam S-J, Cho M-L, et al. Potent and selective inhibition of human monoamine oxidase-B by 4-dimethylaminochalcone and selected chalcone derivatives. Int J Biol Macromol. 2019;137:426–432.
  • Lakshminarayanan B, Baek SC, Lee JP, Kannappan N, Mangiatordi GF, Nicolotti O, Subburaju T, Kim H, Mathew B. Ethoxylated head of chalcones as a new class of multi-targeted MAO inhibitors. Chemistryselect. 2019;4(21):6614–6619.
  • Sasidharan R, Eom BH, Heo JH, Park JE, Abdelgawad MA, Musa A, Gambacorta N, Nicolotti O, Manju SL, Mathew B, et al. Morpholine-based chalcones as dual-acting monoamine oxidase-B and acetylcholinesterase inhibitors: synthesis and biochemical investigations. J Enzyme Inhib Med Chem. 2021;36(1):188–197.
  • Mathew B, Oh JM, Baty RS, Batiha GE-S, Parambi DGT, Gambacorta N, Nicolotti O, Kim H. Piperazine-substituted chalcones: a new class of MAO-B, AChE, and BACE-1 inhibitors for the treatment of neurological disorders. Environ Sci Pollut Res Int. 2021;28(29):38855–38866.
  • Yamali C, Engin FS, Bilginer S, Tugrak M, Ozmen Ozgun D, Ozli G, Levent S, Saglik BN, Ozkay Y, Gul HI. Phenothiazine-based chalcones as potential dual-target inhibitors toward cholinesterases (AChE, BuChE) and monoamine oxidases (MAO-A, MAO-B). J Heterocycl Chem. 2021;58(1):161–171.
  • Jeong GS, Kaipakasseri S, Lee SR, Marraiki N, Batiha GE-S, Dev S, Palakkathondi A, Kavully FS, Gambacorta N, Nicolotti O, et al. Selected 1,3-benzodioxine-containing chalcones as multipotent oxidase and acetylcholinesterase inhibitors. ChemMedChem. 2020;15(23):2257–2263.
  • Sang Z, Song Q, Cao Z, Deng Y, Zhang L. Design, synthesis, and evaluation of chalcone-vitamin E-donepezil hybrids as multi-target-directed ligands for the treatment of Alzheimer’s disease. J Enzyme Inhib Med Chem. 2022;37(1):69–85.
  • Sang Z, Song Q, Cao Z, Deng Y, Tan Z, Zhang L. Design, synthesis and evaluation of novel dimethylamino chalcone-O-alkylamines derivatives as potential multifunctional agents against Alzheimer’s disease. Eur J Med Chem. 2021;216:113310.
  • Bai P, Wang K, Zhang P, Shi J, Cheng X, Zhang Q, Zheng C, Cheng Y, Yang J, Lu X, et al. Development of chalcone-O-alkylamine derivatives as multifunctional agents against Alzheimer’s disease. Eur J Med Chem. 2019;183:111737.
  • Sang Z, Wang K, Shi J, Liu W, Tan Z. Design, synthesis, in-silico and biological evaluation of novel chalcone-O-carbamate derivatives as multifunctional agents for the treatment of Alzheimer’s disease. Eur J Med Chem. 2019;178:726–739.
  • Park DH, Venkatesan J, Kim SK, Ramkumar V, Parthiban P. Antioxidant properties of Mannich bases. Bioorg Med Chem Lett. 2012;22(20):6362–6367.
  • Roman G. Mannich bases in medicinal chemistry and drug design. Eur J Med Chem. 2015;89:743–816.
  • Buyukkidan N, Ozer S. Synthesis and characterization of Ni(ii) and Cu(ii) complexes derived from novel phenolic Mannich bases. Turk J Chem. 2013;37(1):101–110.
  • Bui TH, Le TT, Vu TT, Hoang XT, Luu VC, Vu DH, Tran KV. Design, synthesis and in vitro cytotoxic activity evaluation of new Mannich bases. B Korean Chem Soc. 2012;33(5):1586–1592.
  • Tian C, Qiang X, Song Q, Cao Z, Ye C, He Y, Deng Y, Zhang L. Flurbiprofen-chalcone hybrid Mannich base derivatives as balanced multifunctional agents against Alzheimer’s disease: Design, synthesis and biological evaluation. Bioorg Chem. 2020;94:103477.
  • Zhang X, Song Q, Cao Z, Li Y, Tian C, Yang Z, Zhang H, Deng Y. Design, synthesis and evaluation of chalcone Mannich base derivatives as multifunctional agents for the potential treatment of Alzheimer’s disease. Bioorg Chem. 2019;87:395–408.
  • Oh JM, Rangarajan TM, Chaudhary R, Singh RP, Singh M, Singh RP, Tondo AR, Gambacorta N, Nicolotti O, Mathew B, et al. Novel class of chalcone oxime ethers as potent monoamine oxidase-B and acetylcholinesterase inhibitors. Molecules. 2020;25(10):2356.
  • Oh JM, Rangarajan TM, Chaudhary R, Gambacorta N, Nicolotti O, Kumar S, Mathew B, Kim H. Aldoxime- and hydroxy-functionalized chalcones as highly potent and selective monoamine oxidase-B inhibitors. J Mol Struct. 2022;1250:131817.
  • Kumar B, Dwivedi AR, Sarkar B, Gupta SK, Krishnamurthy S, Mantha AK, Parkash J, Kumar V. 4,6-diphenylpyrimidine derivatives as dual inhibitors of monoamine oxidase and acetylcholinesterase for the treatment of Alzheimer’s disease. ACS Chem Neurosci. 2019;10(1):252–265.
  • Kumar B, Kumar V, Prashar V, Saini S, Dwivedi AR, Bajaj B, Mehta D, Parkash J, Kumar V. Dipropargyl substituted diphenylpyrimidines as dual inhibitors of monoamine oxidase and acetylcholinesterase. Eur J Med Chem. 2019;177:221–234.
  • Kurt BZ, Gazioglu I, Sonmez F, Kucukislamoglu M. Synthesis, antioxidant and anticholinesterase activities of novel coumarylthiazole derivatives. Bioorg Chem. 2015;59:80–90.
  • Xia-Hou ZR, Feng XF, Mei YF, Zhang YY, Yang T, Pan J, Yang JH, Wang YS. 5-Demethoxy-10'-ethoxyexotimarin F, a new coumarin with MAO-B inhibitory potential from Murraya exotica L. Molecules. 2022;27(15):4950.
  • Maliyakkal N, Ahmad I, Kumar S, Sudevan ST, Beeran AA, Patel H, Kim H, Mathew B. A structural approach to investigate halogen substituted MAO-B inhibitors using QSAR modeling, molecular dynamics, and conceptual DFT analysis. J Saudi Chem Soc. 2023;27(4):101675.
  • Joubert J, Foka GB, Repsold BP, Oliver DW, Kapp E, Malan SF. Synthesis and evaluation of 7-substituted coumarin derivatives as multimodal monoamine oxidase-B and cholinesterase inhibitors for the treatment of Alzheimer’s disease. Eur J Med Chem. 2017;125:853–864.
  • Bester E, Petzer A, Petzer JP. Coumarin derivatives as inhibitors of D-amino acid oxidase and monoamine oxidase. Bioorg Chem. 2022;123:105791.
  • Lan JS, Ding Y, Liu Y, Kang P, Hou JW, Zhang XY, Xie SS, Zhang T. Design, synthesis and biological evaluation of novel coumarin-N-benzyl pyridinium hybrids as multi-target agents for the treatment of Alzheimer’s disease. Eur J Med Chem. 2017;139:48–59.
  • Fonseca A, Matos MJ, Reis J, Duarte Y, Gutierrez M, Santana L, Uriarte E, Borges F. Exploring coumarin potentialities: development of new enzymatic inhibitors based on the 6-methyl-3-carboxamidocoumarin scaffold. RSC Adv. 2016;6(55):49764–49768.
  • Vina D, Matos MJ, Yanez M, Santana L, Uriarte E. 3-substituted coumarins as dual inhibitors of AChE and MAO for the treatment of Alzheimer’s disease. Medchemcomm. 2012;3(2):213–218.
  • Zhang Q, Hao C, Miao Y, Yun Y, Sun X, Pan Y, Sun J, Wang X. Design and synthesis of benzyl aminocoumarin and its anti-Alzheimer’s activity. New J Chem. 2021;45(37):17287–17300.
  • Rehuman NA, Oh JM, Nath LR, Khames A, Abdelgawad MA, Gambacorta N, Nicolotti O, Jat RK, Kim H, Mathew B. Halogenated coumarin-chalcones as multifunctional monoamine oxidase-B and butyrylcholinesterase inhibitors. Acs Omega. 2021;6(42):28182–28193.
  • Rodriguez-Enriquez F, Vina D, Uriarte E, Laguna R, Matos MJ. 7-amidocoumarins as multitarget agents against neurodegenerative diseases: substitution pattern modulation. Chemmedchem. 2021;16(1):179–186.
  • Rullo M, Cipolloni M, Catto M, Colliva C, Miniero DV, Latronico T, de Candia M, Benicchi T, Linusson A, Giacche N, et al. Probing fluorinated motifs onto dual AChE-MAO B inhibitors: rational design, synthesis, biological evaluation, and early-ADME studies. J Med Chem. 2022;65(5):3962–3977.
  • He Q, Liu J, Lan JS, Ding J, Sun Y, Fang Y, Jiang N, Yang Z, Sun L, Jin Y, et al. Coumarin-dithiocarbamate hybrids as novel multitarget AChE and MAO-B inhibitors against Alzheimer’s disease: design, synthesis and biological evaluation. Bioorg Chem. 2018;81:512–528.
  • Pisani L, Iacobazzi RM, Catto M, Rullo M, Farina R, Denora N, Cellamare S, Altomare CD. Investigating alkyl nitrates as nitric oxide releasing precursors of multitarget acetylcholinesterase-monoamine oxidase B inhibitors. Eur J Med Chem. 2019;161:292–309.
  • Carradori S, Silvestri R. New frontiers in selective human MAO-B inhibitors. J Med Chem. 2015;58(17):6717–6732.
  • Gaspar A, Reis J, Fonseca A, Milhazes N, Vina D, Uriarte E, Borges F. Chromone 3-phenylcarboxamides as potent and selective MAO-B inhibitors. Bioorg Med Chem Lett. 2011;21(2):707–709.
  • Gaspar A, Silva T, Yanez M, Vina D, Orallo F, Ortuso F, Uriarte E, Alcaro S, Borges F. Chromone, a privileged scaffold for the development of monoamine oxidase inhibitors. J Med Chem. 2011;54(14):5165–5173.
  • Reis J, Cagide F, Estrada Valencia M, Teixeira J, Bagetta D, Perez C, Uriarte E, Oliveira PJ, Ortuso F, Alcaro S, et al. Multi-target-directed ligands for Alzheimer’s disease: discovery of chromone-based monoamine oxidase/cholinesterase inhibitors. Eur J Med Chem. 2018;158:781–800.
  • Wang XB, Yin FC, Huang M, Jiang N, Lan JS, Kong LY. Chromone and donepezil hybrids as new multipotent cholinesterase and monoamine oxidase inhibitors for the potential treatment of Alzheimer’s disease. RSC Med Chem. 2020;11(2):225–233.
  • Estrada-Valencia M, Herrera-Arozamena C, Perez C, Vina D, Morales-Garcia JA, Perez-Castillo A, Ramos E, Romero A, Laurini E, Pricl S, et al. New flavonoid – N,N-dibenzyl(N-methyl)amine hybrids: Multi-target-directed agents for Alzheimer ' s disease endowed with neurogenic properties. J Enzyme Inhib Med Chem. 2019;34(1):712–727.
  • Łażewska D, Bajda M, Kaleta M, Zaręba P, Doroz-Płonka A, Siwek A, Alachkar A, Mogilski S, Saad A, Kuder K, et al. Rational design of new multitarget histamine H-3 receptor ligands as potential candidates for treatment of Alzheimer’s disease. Eur J Med Chem. 2020;207:112743.
  • Campora M, Canale C, Gatta E, Tasso B, Laurini E, Relini A, Pricl S, Catto M, Tonelli M. Multitarget biological profiling of new naphthoquinone and anthraquinone-based derivatives for the treatment of Alzheimer’s disease. ACS Chem Neurosci. 2021;12(3):447–461.
  • Onoda M, Fujita K. Iridium-catalyzed C-alkylation of methyl group on N-heteroaromatic compounds using alcohols. Org Lett. 2020;22(18):7295–7299.
  • Xu R, Xiao G, Li Y, Liu H, Song Q, Zhang X, Yang Z, Zheng Y, Tan Z, Deng Y. Multifunctional 5,6-dimethoxybenzo[d]isothiazol-3(2H)-one-N-alkylbenzylamine derivatives with acetylcholinesterase, monoamine oxidases and β-amyloid aggregation inhibitory activities as potential agents against Alzheimer’s disease. Bioorg Med Chem. 2018;26(8):1885–1895.
  • Liu Z, Shi Y, Zhang X, Yu G, Li J, Cong S, Deng Y. Discovery of novel 3-butyl-6-benzyloxyphthalide Mannich base derivatives as multifunctional agents against Alzheimer’s disease. Bioorg Med Chem. 2022;58:116660.
  • Nadeem MS, Khan JA, Kazmi I, Rashid U. Design, synthesis, and bioevaluation of indole core containing 2-arylidine derivatives of thiazolopyrimidine as multitarget inhibitors of cholinesterases and monoamine oxidase A/B for the treatment of Alzheimer disease. Acs Omega. 2022;7(11):9369–9379.
  • Denya I, Malan SF, Enogieru AB, Omoruyi SI, Ekpo OE, Kapp E, Zindo FT, Joubert J. Design, synthesis and evaluation of indole derivatives as multifunctional agents against Alzheimer’s disease. Medchemcomm. 2018;9(2):357–370.
  • Xu Y, Zhang J, Wang H, Mao F, Bao K, Liu W, Zhu J, Li X, Zhang H, Li J. Rational design of novel selective dual-target inhibitors of acetylcholinesterase and monoamine oxidase B as potential anti-Alzheimer’s disease agents. ACS Chem Neurosci. 2019;10(1):482–496.
  • Osmaniye D, Evren AE, Saglik BN, Levent S, Ozkay Y, Kaplancikli ZA. Design, synthesis, biological activity, molecular docking, and molecular dynamics of novel benzimidazole derivatives as potential AChE/MAO-B dual inhibitors. Arch Pharm. 2022;355(3):e210045.
  • Tzvetkov NT, Stammler HG, Georgieva MG, Russo D, Faraone I, Balacheva AA, Hristova S, Atanasov AG, Milella L, Antonov L, et al. Carboxamides vs. Methanimines: crystal structures, binding interactions, photophysical studies, and biological evaluation of (indazole-5-yl)methanimines as monoamine oxidase B and acetylcholinesterase inhibitors. Eur J Med Chem. 2019;179:404–422.
  • Karaca Ş, Osmaniye D, Sağlık BN, Levent S, Ilgın S, Özkay Y, Karaburun AÇ, Kaplancıklı ZA, Gundogdu-Karaburun N. Synthesis of novel benzothiazole derivatives and investigation of their enzyme inhibitory effects against Alzheimer’s disease. RSC Adv. 2022;12(36):23626–23636.
  • Chimenti F, Bolasco A, Secci D, Chimenti P, Granese A, Carradori S, Yanez M, Orallo F, Ortuso F, Alcaro S. Investigations on the 2-thiazolylhydrazyne scaffold: synthesis and molecular modeling of selective human monoamine oxidase inhibitors. Bioorg Med Chem. 2010;18(15):5715–5723.
  • Turan-Zitouni G, Hussein W, Sağlık BN, Tabbi A, Korkut B. Design, synthesis and biological evaluation of novel N-pyridyl-hydrazone derivatives as potential monoamine oxidase (MAO) inhibitors. Molecules. 2018;23(1):113.
  • Carradori S, Ortuso F, Petzer A, Bagetta D, De Monte C, Secci D, De Vita D, Guglielmi P, Zengin G, Aktumsek A, et al. Design, synthesis and biochemical evaluation of novel multi-target inhibitors as potential anti-Parkinson agents. Eur J Med Chem. 2018;143:1543–1552.
  • Tok F, Koçyiğit-Kaymakçıoğlu B, Sağlık BN, Levent S, Özkay Y, Kaplancıklı ZA. Synthesis.and biological evaluation of new pyrazolone schiff bases as monoamine oxidase and cholinesterase inhibitors. Bioorg Chem. 2019;84:41–50.
  • Vishnu MS, Pavankumar V, Kumar S, Raja AS. Experimental and computational evaluation of piperonylic acid derived hydrazones bearing isatin moieties as dual inhibitors of cholinesterases and monoamine oxidases. Chemmedchem. 2019;14(14):1359–1376.
  • Palakkathondi A, Oh JM, Dev S, Rangarajan TM, Kaipakasseri S, Kavully FS, Gambacorta N, Nicolotti O, Kim H, Mathew B. (Hetero-)(arylidene)arylhydrazides as multitarget-directed monoamine oxidase inhibitors. ACS Comb Sci. 2020;22(11):592–599.
  • Çevik UA, Osmaniye D, Sağlik BN, Çavuşoğlu BK, Levent S, Karaduman AB, Ilgin S, Karaburun AÇ, Özkay Y, Kaplancikli ZA, et al. Multifunctional quinoxaline-hydrazone derivatives with acetylcholinesterase and monoamine oxidases inhibitory activities as potential agents against Alzheimer’s disease. Med Chem Res. 2020;29(6):1000–1011.
  • Saleem Khan M, Asif Nawaz M, Jalil S, Rashid F, Hameed A, Asari A, Mohamad H, Ur Rehman A, Iftikhar M, Iqbal J, et al. Deep eutectic solvent mediated synthesis of 3,4-dihydropyrimidin-2(1H)-ones and evaluation of biological activities targeting neurodegenerative disorders. Bioorg Chem. 2022;118:105457.
  • Jia Z, Wen H, Huang S, Luo Y, Gao J, Wang R, Wan K, Xue W. Click assembly of novel dual inhibitors of AChE and MAO-B from pyridoxine derivatives for the treatment of Alzheimer’s disease. Heterocycl Commun. 2022;28(1):18–25.
  • Ye C, Xu R, Cao Z, Song Q, Yu G, Shi Y, Liu Z, Liu X, Deng Y. Design, synthesis, and in vitro evaluation of 4-aminoalkyl-1(2H)-phthalazinones as potential multifunctional anti-Alzheimer’s disease agents. Bioorg Chem. 2021;111:104895.
  • Zhu G, Wang K, Shi J, Zhang P, Yang D, Fan X, Zhang Z, Liu W, Sang Z. The development of 2-acetylphenol-donepezil hybrids as multifunctional agents for the treatment of Alzheimer’s disease. Bioorg Med Chem Lett. 2019;29(19):126625.
  • Kosak U, Strasek N, Knez D, Jukic M, Zakelj S, Zahirovic A, Pislar A, Brazzolotto X, Nachon F, Kos J, et al. N-alkylpiperidine carbamates as potential anti-Alzheimer’s agents. Eur J Med Chem. 2020;197:112282.
  • Guieu B, Lecoutey C, Legay R, Davis A, Sopkova de Oliveira Santos J, Altomare CD, Catto M, Rochais C, Dallemagne P. First synthesis of racemic trans propargylamino-donepezil, a pleiotrope agent able to both inhibit AChE and MAO-B, with potential interest against Alzheimer’s disease. Molecules. 2020;26(1):80.
  • Nadeem MS, Khan JA, Rashid U. Fluoxetine and sertraline based multitarget inhibitors of cholinesterases and monoamine oxidase-A/B for the treatment of Alzheimer’s disease: synthesis, pharmacology and molecular modeling studies. Int J Biol Macromol. 2021;193(Pt A):19–26.
  • Javed MA, Bibi S, Jan MS, Ikram M, Zaidi A, Farooq U, Sadiq A, Rashid U. Diclofenac derivatives as concomitant inhibitors of cholinesterase, monoamine oxidase, cyclooxygenase-2 and 5-lipoxygenase for the treatment of Alzheimer’s disease: Synthesis, pharmacology, toxicity and docking studies. RSC Adv. 2022;12(35):22503–22517.