641
Views
2
CrossRef citations to date
0
Altmetric
Rapid Communication

Inhibition of pathogenic bacterial carbonic anhydrases by monothiocarbamates

, , , , , , , , ORCID Icon & ORCID Icon show all
Article: 2284119 | Received 02 Aug 2023, Accepted 11 Nov 2023, Published online: 23 Nov 2023

References

  • Plotniece A, Sobolev A, Supuran CT, Carta F, Björkling F, Franzyk H, Yli-Kauhaluoma J, Augustyns K, Cos P, De Vooght L, et al. Selected strategies to fight pathogenic bacteria. J Enzyme Inhib Med Chem. 2023;38(1):2155816.
  • Atanasov AG, Zotchev SB, Dirsch VM, Supuran CT. Natural products in drug discovery: advances and opportunities. Nat Rev Drug Discov. 2021;20(3):200–216.
  • Castanheira M, Mendes RE, Gales AC. Global epidemiology and mechanisms of resistance of Acinetobacter baumannii-calcoaceticus complex. Clin Infect Dis. 2023;76(Suppl 2):S166–S178.
  • Lepore C, Silver L, Theuretzbacher U, Thomas J, Visi D. The small-molecule antibiotics pipeline: 2014-2018. Nat Rev Drug Discov. 2019;18(10):739–739.
  • Hummels KR, Berry SP, Li Z, Taguchi A, Min JK, Walker S, Marks DS, Bernhardt TG. Coordination of bacterial cell wall and outer membrane biosynthesis. Nature. 2023;615(7951):300–304.
  • Benz F, Hall AR. Host-specific plasmid evolution explains the variable spread of clinical antibiotic-resistance plasmids. Proc Natl Acad Sci U S A. 2023;120(15):e2212147120.
  • Magnano San Lio R, Favara G, Maugeri A, Barchitta M, Agodi A. How antimicrobial resistance is linked to climate change: an overview of two intertwined global challenges. Int J Environ Res Public Health. 2023;20(3):1681.
  • Devnath P, Karah N, Graham JP, Rose ES, Asaduzzaman M. Evidence of antimicrobial resistance in bats and its planetary health impact for surveillance of zoonotic spillover events: A scoping review. Int J Environ Res Public Health. 2022;20(1):243.
  • Modak JK, Tikhomirova A, Gorrell RJ, Rahman MM, Kotsanas D, Korman TM, Garcia-Bustos J, Kwok T, Ferrero RL, Supuran CT, et al. Anti-Helicobacter pylori activity of ethoxzolamide. J Enzyme Inhib Med Chem. 2019;34(1):1660–1667.
  • Supuran CT. Bacterial carbonic anhydrases as drug targets: toward novel antibiotics? Front Pharmacol. 2011;2:34.
  • Supuran CT, Capasso C. Antibacterial carbonic anhydrase inhibitors: an update on the recent literature. Expert Opin Ther Pat. 2020;30(12):963–982.
  • Supuran CT. Emerging role of carbonic anhydrase inhibitors. Clin Sci. 2021;135(10):1233–1249.
  • (a) Flaherty DP, Seleem MN, Supuran CT. Bacterial carbonic anhydrases: underexploited antibacterial therapeutic targets. Future Med Chem. 2021;13(19):1619–1622. (b) Supuran CT. An overview of novel antimicrobial carbonic anhydrase inhibitors. Expert Opin Ther Targets. 2023;27(10):897–910.
  • Nocentini A, Capasso C, Supuran CT. Carbonic anhydrase inhibitors as novel antibacterials in the era of antibiotic resistance: where are we now? Antibiotics. 2023;12(1):142.
  • (a) Hewitt CS, Abutaleb NS, Elhassanny AEM, Nocentini A, Cao X, Amos DP, Youse MS, Holly KJ, Marapaka AK, An W, et al. Structure-activity relationship studies of acetazolamide-based carbonic anhydrase inhibitors with activity against Neisseria gonorrhoeae. ACS Infect Dis. 2021;7(7):1969–1984. (b) Abutaleb NS, Elhassanny AEM, Nocentini A, Hewitt CS, Elkashif A, Cooper BR, Supuran CT, Seleem MN, Flaherty DP. Repurposing FDA-approved sulphonamide carbonic anhydrase inhibitors for treatment of Neisseria gonorrhoeae. J Enzyme Inhib Med Chem. 2022;37(1):51–61. (c) Abutaleb NS, Elhassanny AEM, Seleem MN. In vivo efficacy of acetazolamide in a mouse model of Neisseria gonorrhoeae infection. Microb Pathog. 2022;164:105454. d) Abutaleb NS, Elhassanny AE, Flaherty DP, Seleem N. In vitro and in vivo activities of the carbonic anhydrase inhibitor, dorzolamide, against vancomycin-resistant enterococci. Peer J. 2021;9:e11059.
  • (a) Kaur J, Cao X, Abutaleb NS, Elkashif A, Graboski AL, Krabill AD, AbdelKhalek AH, An W, Bhardwaj A, Seleem MN, et al. Optimization of acetazolamide-based scaffold as potent inhibitors of vancomycin-resistant enterococcus. J Med Chem. 2020;63(17):9540–9562. (b) An W, Holly KJ, Nocentini A, Imhoff RD, Hewitt CS, Abutaleb NS, Cao X, Seleem MN, Supuran CT, Flaherty DP. Structure-activity relationship studies for inhibitors for vancomycin-resistant Enterococcus and human carbonic anhydrases. J Enzyme Inhib Med Chem. 2022;37(1):1838–1844. (c) Abutaleb NS, Shrinidhi A, Bandara AB, Seleem MN, Flaherty DP. Evaluation of 1,3,4-thiadiazole carbonic anhydrase inhibitors for gut decolonization of vancomycin-resistant enterococci. ACS Med Chem Lett. 2023;14(4):487–492.
  • (a) Buzas GM, Birinyi P. Newer, older, and alternative agents for the eradication of Helicobacter pylori infection: a narrative review. Antibiotics. 2023;12(6):946. (b) Campestre C, De Luca V, Carradori S, Grande R, Carginale V, Scaloni A, Supuran CT, Capasso C. Carbonic anhydrases: new perspectives on protein functional role and inhibition in Helicobacter pylori. Front Microbiol. 2021;12:629163. (c) Buzás GM, Supuran CT. The history and rationale of using carbonic anhydrase inhibitors in the treatment of peptic ulcers. In memoriam Ioan Puşcaş (1932-2015). J Enzyme Inhib Med Chem. 2016;31(4):527–533.
  • Fantacuzzi M, D'Agostino I, Carradori S, Liguori F, Carta F, Agamennone M, Angeli A, Sannio F, Docquier JD, Capasso C, et al. Benzenesulfonamide derivatives as Vibrio cholerae carbonic anhydrases inhibitors: a computational-aided insight in the structural rigidity-activity relationships. J Enzyme Inhib Med Chem. 2023;38(1):2201402.
  • Giovannuzzi S, Hewitt CS, Nocentini A, Capasso C, Flaherty DP, Supuran CT. Coumarins effectively inhibit bacterial α-carbonic anhydrases. J Enzyme Inhib Med Chem. 2022;37(1):333–338.
  • Giovannuzzi S, Abutaleb NS, Hewitt CS, Carta F, Nocentini A, Seleem MN, Flaherty DP, Supuran CT. Dithiocarbamates effectively inhibit the α-carbonic anhydrase from Neisseria gonorrhoeae. J Enzyme Inhib Med Chem. 2022;37(1):1–8.
  • Giovannuzzi S, Hewitt CS, Nocentini A, Capasso C, Costantino G, Flaherty DP, Supuran CT. Inhibition studies of bacterial α-carbonic anhydrases with phenols. J Enzyme Inhib Med Chem. 2022;37(1):666–671.
  • Vullo D, Durante M, Di Leva FS, Cosconati S, Masini E, Scozzafava A, Novellino E, Supuran CT, Carta F. Monothiocarbamates strongly inhibit carbonic anhydrases in vitro and possess intraocular pressure lowering activity in an animal model of glaucoma. J Med Chem. 2016;59(12):5857–5867.
  • Khalifah RG. The carbon dioxide hydration activity of carbonic anhydrase. I. Stop-flow kinetic studies on the native human isoenzymes B and C. J Biol Chem. 1971;246(8):2561–2573.
  • Alhashimi M, Mayhoub A, Seleem MN. Repurposing salicylamide for combating multidrug-resistant Neisseria gonorrhoeae. Antimicrob Agents Chemother. 2019;63(12):e01225–e01319.
  • (a) Elkashif A, Seleem MN. Investigation of auranofin and gold-containing analogues antibacterial activity against multidrug-resistant Neisseria gonorrhoeae. Sci Rep. 2020;10(1):5602. (b) Naclerio GA, Abutaleb NS, Alhashimi M, Seleem MN, Sintim HO. N-(1, 3, 4-oxadiazol-2-yl) benzamides as antibacterial agents against Neisseria gonorrhoeae. Int J Mol Sci. 2021;22(5):2427.
  • Seong YJ, Alhashimi M, Mayhoub A, Mohammad H, Seleem MN. Repurposing fenamic acid drugs to combat multidrug-resistant Neisseria gonorrhoeae. Antimicrob Agents Chemother. 2020;64(7):e02206–e02219.
  • (a) Supuran CT. Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. Nat Rev Drug Discov. 2008;7(2):168–181. (b) Supuran CT. A simple yet multifaceted 90 years old, evergreen enzyme: Carbonic anhydrase, its inhibition and activation. Bioorg Med Chem Lett. 2023;93:129411.