967
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Discovery of new thymol-3,4-disubstituted thiazole hybrids as dual COX-2/5-LOX inhibitors with in vivo proof

ORCID Icon, , , &
Article: 2309171 | Received 23 Aug 2023, Accepted 14 Jan 2024, Published online: 30 Jan 2024

References

  • Martel-Pelletier J, Lajeunesse D, Reboul P, Pelletier JP. Therapeutic role of dual inhibitors of 5-lox and cox, selective and non-selective non-steroidal anti-inflammatory drugs. Ann Rheum Dis. 2003;62(6):501–509.
  • Garavito RM, Malkowski MG, DeWitt DL. The structures of prostaglandin endoperoxide h synthases-1 and-2. Prostagland Other Lipid Mediat. 2002;68-69:129–152.
  • Zarghi A, Arfaei S. Selective cox-2 inhibitors: a review of their structure-activity relationships. Iran J Pharm Res. 2011;10(4):655–683.
  • Konturek P, Kania J, Burnat G, Hahn E, Konturek S. Prostaglandins as mediators of cox-2 derived carcinogenesis in gastrointestinal tract. J Physiol Pharmacol. 2005;56(Suppl 5):57–73.
  • Williams CS, DuBOIS RN. Prostaglandin endoperoxide synthase: why two isoforms? Am J Physiol. 1996;270(3 Pt 1):G393–G400.
  • Jouzeau J-Y, Terlain B, Abid A, Nédélec E, Netter P. Cyclo-oxygenase isoenzymes: how recent findings affect thinking about nonsteroidal anti-inflammatory drugs. Drugs. 1997;53(4):563–582.
  • Fu J-Y, Masferrer J, Seibert K, Raz A, Needleman P. The induction and suppression of prostaglandin h2 synthase (cyclooxygenase) in human monocytes. J Biol Chem. 1990;265(28):16737–16740.
  • Maślińska D, Kaliszek A, Opertowska J, Toborowicz J, Deregowski K, Szukiewicz D. Constitutive expression of cyclooxygenase-2 (cox-2) in developing brain. A. Choroid plexus in human fetuses. Folia Neuropathologica. 1999;37(4):287–291.
  • Kömhoff M, Wang J-L, Cheng H-F, Langenbach R, Mckanna JA, Harris RC, Breyer MD. Cyclooxygenase-2–selective inhibitors impair glomerulogenesis and renal cortical development. Kidney Int. 2000;57(2):414–422.
  • Charlier C, Michaux C. Dual inhibition of cyclooxygenase-2 (cox-2) and 5-lipoxygenase (5-lox) as a new strategy to provide safer non-steroidal anti-inflammatory drugs. Eur J Med Chem. 2003;38(7-8):645–659.
  • Young RN. Inhibitors of 5-lipoxygenase: a therapeutic potential yet to be fully realized? Eur J Med Chem. 1999;34(9):671–685.
  • Lamie PF, Ali WAM, Bazgier V, Rárová L. Novel n-substituted indole schiff bases as dual inhibitors of cyclooxygenase-2 and 5-lipoxygenase enzymes: synthesis, biological activities in vitro and docking study. Eur J Med Chem. 2016;123803–813.
  • Rainsford K. The effects of 5-lipoxygenase inhibitors and leukotriene antagonists on the development of gastric lesions induced by nonsteroidal antiinflammatory drugs in mice. Agents Actions. 1987;21(3-4):316–319.
  • Rainsford K. Leukotrienes in the pathogenesis of nsaid-induced gastric and intestinal mucosal damage. Agents Actions. 1993;39 Spec No (S1):C24–C26.
  • Laufer S. Discovery and development of ml3000. Inflammopharmacology. 2001;9(1-2):101–112.
  • Hudson N, Balsitis M, Everitt S, Hawkey C. Enhanced gastric mucosal leukotriene b4 synthesis in patients taking non-steroidal anti-inflammatory drugs. Gut. 1993;34(6):742–747.
  • Burnett BP, Levy RM. 5-lipoxygenase metabolic contributions to nsaid-induced organ toxicity. Adv Ther. 2012;29(2):79–98.
  • Sala A, Zarini S, Bolla M. Leukotrienes: lipid bioeffectors of inflammatory reactions. Biochemistry-New York-English Translation of Biokhimiya. 1998;63(1):84–92.
  • Sala A, Zarini S, Bolla M. Leukotrienes: Lipid bioeffectors of inflammatory reactions. Biochemistry (Mosc)). 1998;63(1):84–92.
  • Hallstrand TS, Henderson WR. An update on the role of leukotrienes in asthma. Curr Opin Allergy Clin Immunol. 2010;10(1):60–66.
  • Rossi A, Cuzzocrea S, Sautebin L. Involvement of leukotriene pathway in the pathogenesis of ischemia-reperfusion injury and septic and non-septic shock. Curr Vasc Pharmacol. 2009;7(2):185–197.
  • Wang D, DuBois RN. Eicosanoids and cancer. Nat Rev Cancer. 2010;10(3):181–193.
  • Bäck M. Leukotriene signaling in atherosclerosis and ischemia. Cardiovasc Drugs Ther. 2009;23(1):41–48.
  • Yoshimura H, Sekine S, Adachi H, Uematsu Y, Mitani A, Futaki N, Shimizu N. High levels of human recombinant cyclooxygenase-1 expression in mammalian cells using a novel gene amplification method. Protein Expr Purif. 2011;80(1):41–46.
  • Yao B, Xu J, Harris RC, Zhang M-Z. Renal localization and regulation of 15-hydroxyprostaglandin dehydrogenase. Am J Physiol Renal Physiol. 2008;294(2):433–439.
  • Haruna H, Shimizu T, Ohtsuka Y, Yarita Y, Fujii T, Kudo T, Yamashiro Y. Expression of cox-1, cox-2, and ppar-γ in the gastric mucosa of children with helicobacter pylori infection. Pediatr Int. 2008;50(1):1–6.
  • Yoshida S, Ujiki M, Ding X-Z, Pelham C, Talamonti MS, Bell RH, Denham W, Adrian TE. Pancreatic stellate cells (pscs) express cyclooxygenase-2 (cox-2) and pancreatic cancer stimulates cox-2 in pscs. Mol Cancer. 2005;4(1):27.
  • Abdelall EKA, Kamel GM. Synthesis of new thiazolo-celecoxib analogues as dual cyclooxygenase-2/15-lipoxygenase inhibitors: determination of regio-specific different pyrazole cyclization by 2d nmr. Eur J Med Chem. 2016;118(:250–258.
  • Garcia-Rodriguez LA, Hernández-Diaz S. Nonsteroidal antiinflammatory drugs as a trigger of clinical heart failure. Epidemiology. 2003;14:240–246.
  • Ruan CH, So SP, Ruan KH. Inducible cox-2 dominates over cox-1 in prostacyclin biosynthesis: Mechanisms of cox-2 inhibitor risk to heart disease. Life Sci. 2011;88(1-2):24–30.
  • Khan M, Fraser A. Cox-2 inhibitors and the risk of cardiovascular thrombotic events. Ir Med J. 2012;105(4):119–121.
  • Singh P, Prasher P, Dhillon P, Bhatti R. Indole based peptidomimetics as anti-inflammatory and anti-hyperalgesic agents: Dual inhibition of 5-lox and cox-2 enzymes. Eur J Med Chem. 2015;97:104–123.
  • Tries S, Neupert W, Laufer S. The mechanism of action of the new antiinflammatory compound ml3000: Inhibition of 5-lox and cox-1/2. Inflamm Res. 2002;51(3):135–143.
  • Alvaro-Gracia JM. Licofelone—clinical update on a novel lox/cox inhibitor for the treatment of osteoarthritis. Rheumatology (Oxford)). 2004;43 Suppl 1 (90001):i21–i25.
  • Philoppes JN, Abdelgawad MA, Abourehab MAS, Sebak M,A, Darwish M, Lamie PF. Novel n-methylsulfonyl-indole derivatives: biological activity and cox-2/5-lox inhibitory effect with improved gastro protective profile and reduced cardio vascular risks. J Enzyme Inhib Med Chem. 2023;38(1):246–266.
  • Botelho MA, Barros G, Queiroz DB, Carvalho CF, Gouvea J, Patrus L, Bannet M, Patrus D, Rego A, Silva I, et al. Nanotechnology in phytotherapy: antiinflammatory effect of a nanostructured thymol gel from lippia sidoides in acute periodontitis in rats. Phytother Res. 2016;30(1):152–159.
  • Marsik P, Kokoska L, Landa P, Nepovim A, Soudek P, Vanek T. In vitro inhibitory effects of thymol and quinones of nigella sativa seeds on cyclooxygenase-1- and -2-catalyzed prostaglandin e2 biosyntheses. Planta Med. 2005;71(8):739–742.
  • Meeran N, Fizur M, Javed H, Al Taee H, Azimullah S, Ojha SK. Pharmacological properties and molecular mechanisms of thymol: Prospects for its therapeutic potential and pharmaceutical development. Front Pharmacol. 2017;8(:380.
  • Tsai M-L, Lin C-C, Lin W-C, Yang C-H. Antimicrobial, antioxidant, and anti-inflammatory activities of essential oils from five selected herbs. Biosci Biotechnol Biochem. 2011;75(10):1977–1983.
  • El-Miligy MMM, Al-Kubeisi AK, Bekhit MG, El-Zemity SR, Nassra RA, Hazzaa AA. Towards safer anti-inflammatory therapy: Synthesis of new thymol–pyrazole hybrids as dual cox-2/5-lox inhibitors. J Enzyme Inhib Med Chem. 2023;38(1):294–308.
  • El-Miligy MMM, Al-Kubeisi AK, El-Zemity SR, Nassra RA, Abu-Serie MM, Hazzaa AA. Discovery of small molecule acting as multitarget inhibitor of colorectal cancer by simultaneous blocking of the key cox-2, 5-lox and pim-1 kinase enzymes. Bioorg Chem. 2021;115:105171.
  • Che X-H, Chen C-L, Ye X-L, Weng G-B, Guo X-Z, Yu W-Y, Tao J, Chen Y-C, Chen X. Dual inhibition of cox-2/5-lox blocks colon cancer proliferation, migration and invasion in vitro. Oncol Rep. 2016;35(3):1680–1688.
  • Sinha S, Sravanthi T, Yuvaraj S, Manju S, Doble M. 2-amino-4-aryl thiazole: a promising scaffold identified as a potent 5-lox inhibitor. RSC Adv. 2016;6(23):19271–19279.
  • Apostolidis I, Liaras K, Geronikaki A, Hadjipavlou-Litina D, Gavalas A, Soković M, Glamočlija J, Ćirić A. Synthesis and biological evaluation of some 5-arylidene-2-(1, 3-thiazol-2-ylimino)-1, 3-thiazolidin-4-ones as dual anti-inflammatory/antimicrobial agents. Bioorg Med Chem. 2013;21(2):532–539.
  • Jacob P J, Manju SL. Identification and development of thiazole leads as cox-2/5-lox inhibitors through in-vitro and in-vivo biological evaluation for anti-inflammatory activity. Bioorg Chem. 2020;100(:103882.
  • P JJ, S L M. Novel approach of multi-targeted thiazoles and thiazolidenes toward anti-inflammatory and anticancer therapy—dual inhibition of cox-2 and 5-lox enzymes. Med Chem Res. 2021;30(1):236–257.
  • Rajput J, Bagul S, Tadavi S, Karandikar P, Bendre R. Design, synthesis and biological evaluation of novel class diindolyl methanes (dims) derived from naturally occurring phenolic monoterpenoids. Med Chem. 2016;6(2):123–128.
  • Duff JC. 96. A new general method for the preparation of o-hydroxyaldehydes from phenols and hexamethylenetetramine. J Chem Soc. 1941:547–550.
  • Casiraghi G, Casnati G, Cornia M, Pochini A, Puglia G, Sartori G, Ungaro R. Selective reactions using metal phenoxides. Part 1. Reactions with formaldehyde. J Chem Soc, Perkin Trans 1. 1978;4(4):318–321.):
  • Casnati G, Casiraghi G, Puglia G, Sartori G, Terenghi G. Process for preparing 2-hydroxybenzoic aldehydes. In. Process for preparing 2-hydroxybenzoic aldehydes: Google Patents; 1979.
  • Yousef TA, Badria FA, Ghazy SE, El-Gammal OA, El-Reash GMA. In vitro and in vivo antitumor activity of some synthesized 4-(2-pyridyl)-3-thiosemicarbazides derivatives. Int J Med Med Sci. 2011;3(2):37–46.
  • Serra S, Moineaux L, Vancraeynest C, Masereel B, Wouters J, Pochet L, Frédérick R. Thiosemicarbazide, a fragment with promising indolamine-2, 3-dioxygenase (ido) inhibition properties. Eur J Med Chem. 2014;82(:96–105.
  • Betz R, McCleland C, Marchand H. 2-bromo-1-phenylethanone. Acta Crystallogr Sect E Struct Rep Online. 2011;67(Pt 5):o1207–o1207.
  • Tada N, Ban K, Hirashima S-i, Miura T, Itoh A. Direct synthesis of α-bromoketones from alkylarenes by aerobic visible light photooxidation. Org Biomol Chem. 2010;8(20):4701–4704.
  • Zhang J, Zhuang L-h, Wang G-w. 2-bromo-1-(4-methoxyphenyl) ethanone. Acta Crystallogr Sect E Struct Rep Online. 2009;65(Pt 9):o2245.
  • Cox inhibitor screening assay kit. No. 560131.
  • Cayman C. Lipoxygenase inhibitor screening assay kit 760700..
  • Razmi A, Zarghi A, Arfaee S, Naderi N, Faizi M. Evaluation of anti-nociceptive and anti-inflammatory activities of novel chalcone derivatives. Iran J Pharm Res. 2013;12(Suppl):153–159.
  • Lakshmi V, Mishra V, Palit G. A new gastroprotective effect of limonoid compounds xyloccensins x and y from xylocarpus molluccensis in rats. Nat Prod Bioprospect. 2014;4(5):277–283.
  • Hazzaa AA-E. Synthesis and biological evaluation of novel terpene derivatives. AlexU-IACUC (Member of ICLAS) 2019.
  • Srivastava S, Nath C, Gupta M, Vrat S, Sinha J, Dhawan K, Gupta G. Protection against gastric ulcer by verapamil. Pharmacol Res. 1991;23(1):81–86.
  • Molecular operating environment (moe) 2016.08, chemical computing group inc. 1010 sherbrooke st. West, suite #910, montreal, qc, canada, h3a2r7. www.Chemcomp.Com.
  • Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl E. Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1-2:19–25.
  • https://simlab.Uams.Edu/.
  • Bullock AN, Russo S, Amos A, Pagano N, Bregman H, Debreczeni JE, Lee WH, von Delft F, Meggers E, Knapp S. Crystal structure of the pim2 kinase in complex with an organoruthenium inhibitor. Plos One. 2009;4(10):e7112.
  • Sotriffer Accounting AC. for induced-fit effects in docking: What is possible and what is not? Curr Top Med Chem. 2011;11(2):179–191.
  • Barreca ML, Iraci N, De Luca L, Chimirri A. Induced‐fit docking approach provides insight into the binding mode and mechanism of action of hiv‐1 integrase inhibitors. ChemMedChem Chem Enabl Drug Discov. 2009;4(9):1446–1456.
  • Wang JL, Limburg D, Graneto MJ, Springer J, Hamper JRB, Liao S, Pawlitz JL, Kurumbail RG, Maziasz T, Talley JJ, et al. The novel benzopyran class of selective cyclooxygenase-2 inhibitors. Part 2: The second clinical candidate having a shorter and favorable human half-life. Bioorg Med Chem Lett. 2010;20(23):7159–7163.
  • Kurumbail RG, Stevens AM, Gierse JK, McDonald JJ, Stegeman RA, Pak JY, Gildehaus D, Miyashiro JM, Penning TD, Seibert K, et al. Structural basis for selective inhibition of cyclooxygenase-2 by anti-inflammatory agents. Nature. 1996;384(6610):644–648.
  • Gilbert NC, Rui Z, Neau DB, Waight MT, Bartlett SG, Boeglin WE, Brash AR, Newcomer ME. Conversion of human 5-lipoxygenase to a 15-lipoxygenase by a point mutation to mimic phosphorylation at serine-663. Faseb J. 2012;26(8):3222–3229.
  • Hsu K-C, HuangFu W-C, Lin TE, Chao M-W, Sung T-Y, Chen Y-Y, Pan S-L, Lee J-C, Tzou S-C, Sun C-M, et al. A site-moiety map and virtual screening approach for discovery of novel 5-lox inhibitors. Sci Rep. 2020;10(1):10510.