328
Views
9
CrossRef citations to date
0
Altmetric
Review

Immunology, epidemiology and mathematical modelling towards a better understanding of invasive non-typhoidal Salmonella disease and rational vaccination approaches

&
Pages 1545-1555 | Received 01 Feb 2016, Accepted 10 May 2016, Published online: 27 May 2016

References

  • Crump JA, Heyderman RS. Invasive Salmonella infections in Africa. Trans R Soc Trop Med Hyg. 2014;108:673–675.
  • Crump JA, Sjolund-Karlsson M, Gordon MA, et al. Epidemiology, clinical presentation, laboratory diagnosis, antimicrobial resistance, and antimicrobial management of invasive Salmonella infections. Clin Microbiol Rev. 2015;28:901–937.
  • Feasey NA, Dougan G, Kingsley RA, et al. Invasive non-typhoidal Salmonella disease: an emerging and neglected tropical disease in Africa. Lancet. 2012;379:2489–2499.
  • Gordon MA. Salmonella infections in immunocompromised adults. J Infect. 2008;56:413–422.
  • Gordon MA, Graham SM, Walsh AL, et al. Epidemics of invasive Salmonella enterica serovar enteritidis and S. enterica serovar typhimurium infection associated with multidrug resistance among adults and children in Malawi. Clin Infect Dis. 2008;46:963–969.
  • Kariuki S, Gordon MA, Feasey N, et al. Antimicrobial resistance and management of invasive Salmonella disease. Vaccine. 2015;33(Suppl 3):C21–9.
  • Reddy EA, Shaw AV, Crump JA. Community-acquired bloodstream infections in Africa: a systematic review and meta-analysis. Lancet Infect Dis. 2010;10:417–432.
  • Ao TT, Feasey NA, Gordon MA, et al. Global burden of invasive nontyphoidal Salmonella disease. Emerg Infect Dis. 2015;2010(1):21.
  • Gilchrist JJ, MacLennan CA, Hill AV. Genetic susceptibility to invasive Salmonella disease. Nat Rev Immunol. 2015;15:452–463.
  • Mastroeni P, Ugrinovic S, Chandra A, et al. Resistance and susceptibility to Salmonella infections: lessons from mice and patients with immunodeficiencies. Rev Med Microbiol. 2003;14:53–62.
  • Bronzan RN, Taylor TE, Mwenechanya J, et al. Bacteremia in Malawian children with severe malaria: prevalence, etiology, HIV coinfection, and outcome. J Infect Dis. 2007;195:895–904.
  • Calis JC, Phiri KS, Faragher EB, et al. Severe anemia in Malawian children. N Engl J Med. 2008;358:888–899.
  • Feasey NA, Everett D, Faragher EB, et al. Modelling the contributions of malaria, HIV, malnutrition and rainfall to the decline in paediatric invasive non-typhoidal Salmonella disease in Malawi. PLoS Negl Trop Dis. 2015;9:e0003979.
  • Gordon MA. Invasive nontyphoidal Salmonella disease: epidemiology, pathogenesis and diagnosis. Curr Opin Infect Dis. 2011;24:484–489.
  • Greenwood BM, Bradley-Moore AM, Bryceson AD, et al. Immunosuppression in children with malaria. Lancet. 1972;1:169–172.
  • MacLennan CA, Gilchrist JJ, Gordon MA, et al. Dysregulated humoral immunity to nontyphoidal Salmonella in HIV-infected African adults. Science. 2010;328:508–512.
  • MacLennan CA, Gondwe EN, Msefula CL, et al. The neglected role of antibody in protection against bacteremia caused by nontyphoidal strains of Salmonella in African children. J Clin Invest. 2008;118:1553–1562.
  • Hohmann EL. Nontyphoidal salmonellosis. Clin Infect Dis. 2001;32:263–269.
  • Mirza SH, Beeching NJ, Hart CA. Multi-drug resistant typhoid: a global problem [editorial]. J Med Microbiol. 1996;44:317–319.
  • Kingsley RA, Msefula CL, Thomson NR, et al. Epidemic multiple drug resistant Salmonella typhimurium causing invasive disease in sub-Saharan Africa have a distinct genotype. Genome Res. 2009;19:2279–2287.
  • MacLennan CA, Martin LB, Micoli F. Vaccines against invasive Salmonella disease: current status and future directions. Hum Vaccin Immunother. 2014;10:1478–1493.
  • Patel JC, Galan JE. Manipulation of the host actin cytoskeleton by Salmonella–all in the name of entry. Curr Opin Microbiol. 2005;8:10–15.
  • Haraga A, Ohlson MB, Miller SI. Salmonellae interplay with host cells. Nat Rev Microbiol. 2008;6:53–66.
  • Santos RL, Raffatellu M, Bevins CL, et al. Life in the inflamed intestine, Salmonella style. Trends Microbiol. 2009;17:498–506.
  • Rescigno M, Urbano M, Valzasina B, et al. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat Immunol. 2001;2:361–367.
  • Vazquez-Torres A, Jones-Carson J, Baumler AJ, et al. Extraintestinal dissemination of Salmonella by CD18-expressing phagocytes. Nature. 1999;401:804–808.
  • Carter PB, Collins FM. The route of enteric infection in normal mice. J Exp Med. 1974;139:1189–1203.
  • Garvis SG, Beuzon CR, Holden DW. A role for the PhoP/Q regulon in inhibition of fusion between lysosomes and Salmonella-containing vacuoles in macrophages. Cell Microbiol. 2001;3:731–744.
  • Biozzi G, Howard JG, Halpern BN, et al. The kinetics of blood clearance of isotopically labelled Salmonella enteritidis by the reticuloendothelial system in mice. Immunology. 1960;3:74–89.
  • Warren J, Mastroeni P, Dougan G, et al. Increased susceptibility of C1q-Deficient mice to Salmonella enterica serovar typhimurium infection. Infect Immun. 2002;70:551–557.
  • Conlan JW. Critical roles of neutrophils in host defense against experimental systemic infections of mice by listeria monocytogenes, Salmonella typhimurium, and yersinia enterocolitica. Infect Immun. 1997;65:630–635.
  • Dunlap NE, Benjamin WH Jr., Berry AK, et al. A ‘safe-site’ for Salmonella typhimurium is within splenic polymorphonuclear cells. Microb Pathog. 1992;13:181–190.
  • Hormaeche CE. The natural resistance of radiation chimeras to S. typhimurium C5. Immunology. 1979;37:329–332.
  • Mastroeni P, Skepper JN, Hormaeche CE. Effect of anti-tumor necrosis factor alpha antibodies on histopathology of primary Salmonella infections [published erratum appears in Infect Immun 1995 Dec;63(12):4966]. Infect Immun. 1995;63:3674–3682.
  • Richter-Dahlfors A, Buchan AMJ, Finlay BB. Murine salmonellosis studied by confocal microscopy: Salmonella typhimurium resides intracellularly inside macrophages and exerts a cytotoxic effect on phagocytes in vivo. J Exp Med. 1997;186:569–580.
  • Salcedo SP, Noursadeghi M, Cohen J, et al. Intracellular replication of Salmonella typhimurium strains in specific subsets of splenic macrophages in vivo. Cell Microbiol. 2001;3:587–597.
  • Sheppard M, Webb C, Heath F, et al. Dynamics of bacterial growth and distribution within the liver during Salmonella infection. Cell Microbiol. 2003;5:593–600.
  • Clare S, Goldin R, Hale C, et al. Intracellular adhesion molecule 1 plays a key role in acquired immunity to salmonellosis. Infect Immun. 2003;71:5881–5891.
  • Everest P, Allen J, Papakonstantinopoulou A, et al. Salmonella typhimurium infections in mice deficient in interleukin-4 production: role of IL-4 in infection-associated pathology. J Immunol. 1997;159:1820–1827.
  • Everest P, Roberts M, Dougan G. Susceptibility to Salmonella typhimurium infection and effectiveness of vaccination in mice deficient in the tumor necrosis factor alpha p55 receptor. Infect Immun. 1998;66:3355–3364.
  • Mastroeni P, Grant A. Dynamics of spread of Salmonella enterica in the systemic compartment. Microbes Infect. 2013;15:849–857.
  • Mastroeni P, Grant A, Restif O, et al. A dynamic view of the spread and intracellular distribution of Salmonella enterica. Nat Rev Microbiol. 2009;7:73–80.
  • Mastroeni P, Grant AJ. Spread of Salmonella enterica in the body during systemic infection: unravelling host and pathogen determinants. Expert Rev Mol Med. 2011;13:e12.
  • Mastroeni P, Arena A, Costa GB, et al. Serum TNF alpha in mouse typhoid and enhancement of a Salmonella infection by anti-TNF alpha antibodies. Microb Pathog. 1991;11:33–38.
  • Mastroeni P, Clare S, Khan S, et al. Interleukin 18 contributes to host resistance and gamma interferon production in mice infected with virulent Salmonella typhimurium. Infect Immun. 1999;67:478–483.
  • Mastroeni P, Harrison JA, Chabalgoity JA, et al. Effect of interleukin 12 neutralization on host resistance and gamma interferon production in mouse typhoid. Infect Immun. 1996;64:189–196.
  • Mastroeni P, Harrison JA, Robinson JH, et al. Interleukin-12 is required for control of the growth of attenuated aromatic-compound-dependent salmonellae in BALB/c mice: role of gamma interferon and macrophage activation. Infect Immun. 1998;66:4767–4776.
  • Muotiala A, Makela PH. The role of IFN-gamma in murine Salmonella typhimurium infection. Microb Pathog. 1990;8:135–141.
  • Vazquez-Torres A, Fantuzzi G, Edwards CK 3rd, et al. Defective localization of the NADPH phagocyte oxidase to Salmonella- containing phagosomes in tumor necrosis factor p55 receptor-deficient macrophages. Proc Natl Acad Sci U S A. 2001;98:2561–2565.
  • Geddes K, Cruz F, Heffron F. Analysis of cells targeted by Salmonella type III secretion in vivo. PLoS Pathog. 2007;3:e196.
  • Hsu HS. Pathogenesis and immunity in murine salmonellosis. Microbiol Rev. 1989;53:390–409.
  • Yrlid U, Svensson M, Hakansson A, et al. In vivo activation of dendritic cells and T cells during Salmonella enterica serovar typhimurium infection. Infect Immun. 2001;69:5726–5735.
  • Menendez A, Arena ET, Guttman JA, et al. Salmonella infection of gallbladder epithelial cells drives local inflammation and injury in a model of acute typhoid fever. J Infect Dis. 2009;200:1703–1713.
  • Crawford RW, Rosales-Reyes R, Ramirez-Aguilar Mde L, et al. Gallstones play a significant role in Salmonella spp. gallbladder colonization and carriage. Proc Natl Acad Sci U S A. 2010;107:4353–4358.
  • Gordon MA, Kankwatira AM, Mwafulirwa G, et al. Invasive non-typhoid salmonellae establish systemic intracellular infection in HIV-infected adults: an emerging disease pathogenesis. Clin Infect Dis. 2010;50:953–962.
  • Gordon MA, Gordon SB, Musaya L, et al. Primary macrophages from HIV-infected adults show dysregulated cytokine responses to Salmonella, but normal internalization and killing. Aids. 2007;21:2399–2408.
  • Schreiber F, Lynn DJ, Houston A, et al. The human transcriptome during nontyphoid Salmonella and HIV coinfection reveals attenuated NFkappaB-mediated inflammation and persistent cell cycle disruption. J Infect Dis. 2011;204:1237–1245.
  • Mastroeni P, Vazquez-Torres A, Fang FC, et al. Antimicrobial actions of the NADPH phagocyte oxidase and inducible nitric oxide synthase in experimental salmonellosisII. Effects on microbial proliferation and host survival in vivo. J Exp Med. 2000;192:237–248.
  • Vazquez-Torres A, Jones-Carson J, Mastroeni P, et al. Antimicrobial actions of the NADPH phagocyte oxidase and inducible nitric oxide synthase in experimental salmonellosis. I. Effects on microbial killing by activated peritoneal macrophages in vitro. J Exp Med. 2000;192:227–236.
  • Vazquez-Torres A, Xu Y, Jones-Carson J, et al. Salmonella pathogenicity island 2-dependent evasion of the phagocyte NADPH oxidase. Science. 2000;287:1655–1658.
  • Aussel L, Zhao W, Hebrard M, et al. Salmonella detoxifying enzymes are sufficient to cope with the host oxidative burst. Mol Microbiol. 2011;80:628–640.
  • De Groote MA, Ochsner UA, Shiloh MU, et al. Periplasmic superoxide dismutase protects Salmonella from products of phagocyte NADPH-oxidase and nitric oxide synthase. Proc Natl Acad Sci U S A. 1997;94:13997–14001.
  • Gallois A, Klein JR, Allen LA, et al. Salmonella pathogenicity island 2-encoded type III secretion system mediates exclusion of NADPH oxidase assembly from the phagosomal membrane. J Immunol. 2001;166:5741–5748.
  • Biggs HM, Lester R, Nadjm B, et al. Invasive salmonella infections in areas of high and low malaria transmission intensity in Tanzania. Clin Infect Dis. 2014;58:638–647.
  • Church J, Maitland K. Invasive bacterial co-infection in African children with plasmodium falciparum malaria: a systematic review. BMC Med. 2014;12:31.
  • Takem EN, Roca A, Cunnington A. The association between malaria and non-typhoid Salmonella bacteraemia in children in sub-Saharan Africa: a literature review. Malar J. 2014;13:400.
  • Schwarzer E, Arese P. Phagocytosis of malarial pigment hemozoin inhibits NADPH-oxidase activity in human monocyte-derived macrophages. Biochim Biophys Acta. 1996;1316:169–175.
  • Schwarzer ETF, Ulliers D, Giribaldi G, et al. Impairment of macrophage functions after ingestion of Plasmodium falciparum-infected erythrocytes or isolated malarial pigment. J Exp Med. 1992;176:1033–1041.
  • Cunnington AJ, de Souza JB, Walther M, et al. Malaria impairs resistance to Salmonella through heme- and heme oxygenase-dependent dysfunctional granulocyte mobilization. Nat Med. 2012;18:120–127.
  • Cunnington AJ, Njie M, Correa S, et al. Prolonged neutrophil dysfunction after Plasmodium falciparum malaria is related to hemolysis and heme oxygenase-1 induction. J Immunol. 2012;189:5336–5346.
  • Mooney JP, Butler BP, Lokken KL, et al. The mucosal inflammatory response to non-typhoidal Salmonella in the intestine is blunted by IL-10 during concurrent malaria parasite infection. Mucosal Immunol. 2014;7(6):1302–1311.
  • Lokken KL, Mooney JP, Butler BP, et al. Malaria parasite infection compromises control of concurrent systemic non-typhoidal Salmonella infection via IL-10-mediated alteration of myeloid cell function. PLoS Pathog. 2014;10:e1004049.
  • Mooney JP, Lee SJ, Lokken KL, et al. Transient loss of protection afforded by a live attenuated non-typhoidal Salmonella vaccine in mice co-infected with malaria. PLoS Negl Trop Dis. 2015;9:e0004027.
  • Grant AJ, Foster GL, McKinley TJ, et al. Bacterial growth rate and host factors as determinants of intracellular bacterial distributions in systemic Salmonella enterica infections. Infect Immun. 2009;77:5608–5611.
  • Grant AJ, Morgan FJ, McKinley TJ, et al. Attenuated Salmonella Typhimurium lacking the pathogenicity island-2 type 3 secretion system grow to high bacterial numbers inside phagocytes in mice. PLoS Pathog. 2012;8:e1003070.
  • Brown SP, Cornell SJ, Sheppard M, et al. Intracellular demography and the dynamics of Salmonella enterica infections. PLoS Biol. 2006;4:e349.
  • Grant AJ, Sheppard M, Deardon R, et al. Caspase-3-dependent phagocyte death during systemic Salmonella enterica serovar Typhimurium infection of mice. Immunology. 2008;125(1):28–37.
  • Mastroeni P, Villarreal-Ramos B, Hormaeche CE. Adoptive transfer of immunity to oral challenge with virulent salmonellae in innately susceptible BALB/c mice requires both immune serum and T cells. Infect Immun. 1993;61:3981–3984.
  • McSorley SJ, Jenkins MK. Antibody is required for protection against virulent but not attenuated Salmonella enterica serovar typhimurium. Infect Immun. 2000;68:3344–3348.
  • Menager N, Foster G, Ugrinovic S, et al. Fcgamma receptors are crucial for the expression of acquired resistance to virulent Salmonella enterica serovar Typhimurium in vivo but are not required for the induction of humoral or T-cell-mediated immunity. Immunology. 2007;120:424–432.
  • Grant AJ, Restif O, McKinley TJ, et al. Modelling within-host spatiotemporal dynamics of invasive bacterial disease. PLoS Biol. 2008;6:e74.
  • Hormaeche CE, Mastroeni P, Harrison JA, et al. Protection against oral challenge three months after i.v. immunization of BALB/c mice with live Aro Salmonella typhimurium and Salmonella enteritidis vaccines is serotype (species)-dependent and only partially determined by the main LPS O antigen. Vaccine. 1996;14:251–259.
  • Liang-Takasaki CJ, Saxen H, Makela PH, et al. Complement activation by polysaccharide of lipopolysaccharide: an important virulence determinant of salmonellae. Infect Immun. 1983;41:563–569.
  • Uppington H, Menager N, Boross P, et al. Effect of immune serum and role of individual Fcgamma receptors on the intracellular distribution and survival of Salmonella enterica serovar Typhimurium in murine macrophages. Immunology. 2006;119:147–158.
  • Goh YS, Clare S, Micoli F, et al. Monoclonal antibodies of a diverse isotype induced by an O-antigen glycoconjugate vaccine mediate in vitro and in vivo killing of african invasive nontyphoidal Salmonella. Infect Immun. 2015;83:3722–3731.
  • Gondwe EN, Molyneux ME, Goodall M, et al. Importance of antibody and complement for oxidative burst and killing of invasive nontyphoidal Salmonella by blood cells in Africans. Proc Natl Acad Sci U S A. 2010;107:3070–3075.
  • Siggins MK, O’Shaughnessy CM, Pravin J, et al. Differential timing of antibody-mediated phagocytosis and cell-free killing of invasive African Salmonella allows immune evasion. Eur J Immunol. 2014;44:1093–1098.
  • Nyirenda TS, Gilchrist JJ, Feasey NA, et al. Sequential acquisition of T cells and antibodies to nontyphoidal Salmonella in Malawian children. J Infect Dis. 2014;210:56–64.
  • Greenwood BM, Brueton MJ. Complement activation in children with acute malaria. Clin Exp Immunol. 1974;18:267–272.
  • Tennant SM, MacLennan CA, Simon R, et al. Nontyphoidal salmonella disease: current status of vaccine research and development. Vaccine. 2016. pii: S0264-410X(16)30069-X. doi:10.1016/j.vaccine.2016.03.072.
  • Rondini S, Micoli F, Lanzilao L, et al. Design of glycoconjugate vaccines against invasive African Salmonella enterica serovar Typhimurium. Infect Immun. 2015;83:996–1007.
  • Stefanetti G, Hu QY, Usera A, et al. Sugar-protein connectivity impacts on the immunogenicity of site-selective Salmonella O-Antigen glycoconjugate vaccines. Angew Chem Int Ed Engl. 2015;54:13198–13203.
  • Simon R, Tennant SM, Wang JY, et al. Salmonella enterica serovar enteritidis core O polysaccharide conjugated to H: g,mflagellin as a candidate vaccine for protection against invasive infection with S. Enteritidis Infect Immun. 2011;79:4240–4249.
  • Gil-Cruz C, Bobat S, Marshall JL, et al. The porin OmpD from nontyphoidal Salmonella is a key target for a protective B1b cell antibody response. Proc Natl Acad Sci U S A. 2009;106:9803–9808.
  • Goh YS, Grant AJ, Restif O, et al. Human IgG isotypes and activating Fcgamma receptors in the interaction of Salmonella enterica serovar Typhimurium with phagocytic cells. Immunology. 2011;133:74–83.
  • Rossi O, Caboni M, Negrea A, et al. Toll-like receptor activation by generalized modules for membrane antigens from lipid A mutants of salmonella enterica serovars typhimurium and enteritidis. Clin Vaccine Immunol. 2016;23:304–314.
  • Meloni E, Colucci AM, Micoli F, et al. Simplified low-cost production of O-antigen from salmonella typhimurium generalized modules for membrane antigens (GMMA). J Biotechnol. 2015;198:46–52.
  • Mastroeni P, Chabalgoity JA, Dunstan SJ, et al. Salmonella: immune responses and vaccines. Vet J. 2001;161:132–164.
  • Hindle Z, Chatfield SN, Phillimore J, et al. Characterization of Salmonella enterica derivatives harboring defined aroC and Salmonella pathogenicity island 2 type III secretion system (ssaV) mutations by immunization of healthy volunteers. Infect Immun. 2002;70:3457–3467.
  • Tennant SM, Wang JY, Galen JE, et al. Engineering and preclinical evaluation of attenuated nontyphoidal Salmonella strains serving as live oral vaccines and as reagent strains. Infect Immun. 2011;79:4175–4185.
  • Tennant SM, Schmidlein P, Simon R, et al. Refined live attenuated Salmonella enterica serovar typhimurium and enteritidis vaccines mediate homologous and heterologous serogroup protection in mice. Infect Immun. 2015;83:4504–4512.
  • Hoiseth SK, Stocker BA. Aromatic-dependent Salmonella typhimurium are non-virulent and effective as live vaccines. Nature. 1981;291:238–239.
  • Hess J, Ladel C, Miko D, et al. Salmonella typhimurium aroA- infection in gene-targeted immunodeficient mice: major role of CD4+ TCR-alpha beta cells and IFN-gamma in bacterial clearance independent of intracellular location. J Immunol. 1996;156:3321–3326.
  • Sinha K, Mastroeni P, Harrison J, et al. Salmonella typhimurium aroA, htrA, and aroD htrA mutants cause progressive infections in athymic (nu/nu) BALB/c mice. Infect Immun. 1997;65:1566–1569.
  • Grant AJ, Oshota O, Chaudhuri RR, et al. Genes required for the fitness of Salmonella enterica serovar typhimurium during infection of immunodeficient gp91-/-phox Mice. Infect Immun. 2016;84(4):989–997.
  • MacLennan CA. Antibodies and protection against invasive salmonella disease. Front Immunol. 2014;5:635.
  • Collins FM. Vaccines and cell-mediated immunity. Bacteriol Rev. 1974;38:371–402.
  • Coward C, Restif O, Dybowski R, et al. The effects of vaccination and immunity on bacterial infection dynamics in vivo. PLoS Pathog. 2014;10:e1004359.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.