502
Views
44
CrossRef citations to date
0
Altmetric
Review

Vaccines for piscirickettsiosis (salmonid rickettsial septicaemia, SRS): the Chile perspective

, &
Pages 215-228 | Received 06 Jun 2016, Accepted 30 Sep 2016, Published online: 12 Oct 2016

References

  • Bravo S. Environmental impacts and management of veterinary medicines in aquaculture: the case of salmon aquaculture in Chile. FAO Fish Aquacult Tech Pap. 2012;547:11–24. Available from: http://www.fao.org/docrep/016/ba0056e/ba0056e0000.htm
  • Gaggero A, Castro H, Sandino AM. First isolation of Piscirickettsia salmonis from coho salmon, Oncorhynchus kisutch (Walbaum), and rainbow-trout, Oncorhynchus mykiss (Walbaum), during the fresh-water stage of their life-cycle. J Fish Dis. 1995;18(3):277–279.
  • McCarthy U, Steiropoulos NA, Thompson KD, et al. Confirmation of Piscirickettsia salmonis as a pathogen in European sea bass Dicentrarchus labrax and phylogenetic comparison with salmonid strains. Dis Aquat Org. 2005;64(2):107–119.
  • Chen MF, Yun S, Marty GD, et al. A Piscirickettsia salmonis-like bacterium associated with mortality of white seabass Atractoscion nobilis. Dis Aquat Org. 2000;43(2):117–126.
  • Chen SC, Wang PC, Tung MC, et al. A Piscirickettsia salmonis-like organism in grouper, Epinephelus melanostigma, in Taiwan. J Fish Dis. 2000;23(6):415–418.
  • Mauel MJ, Miller DL. Piscirickettsiosis and piscirickettsiosis-like infections in fish: a review. Vet Microbiol. 2002;87(4):279–289.
  • Jones SRM, Markham RJF, Groman DB, et al. Virulence and antigenic characteristics of a cultured Rickettsiales-like organism isolated from farmed Atlantic salmon Salmo salar in eastern Canada. Dis Aquat Org. 1998;33(1):25–31.
  • Olsen AB, Melby HP, Speilberg L, et al. Piscirickettsia salmonis infection in Atlantic salmon Salmo salar in Norway - epidemiological, pathological and microbiological findings. D Aquat Org. 1997;31(1):35–48.
  • Ozturk RC, Altinok I. Bacterial and viral fish diseases in Turkey. Turk J Fish Aquat Sci. 2014;14(1):275–297.
  • House ML, Bartholomew JL, Winton JR, et al. Relative virulence of three isolates of Piscirickettsia salmonis for coho salmon Oncorhynchus kisutch. Dis Aquat Org. 1999;35(2):107–113.
  • Bravo S, Campos M. Sindrome del salmon Coho. Chil Pesquero. 1989;54:47–48.
  • Lannan CN, Fryer JL. Piscirickettsia salmonis, a major pathogen of salmonid fish in Chile. Fish Res. 1993;17(1–2):115–121.
  • Fryer JL, Lannan CN, Garces LH, et al. Isolation of a Rickettsiales-like organism from diseased Coho salmon (Oncorhynchus kisutch) in Chile. Fish Pathol. 1990;25(2):107–114.
  • Fryer JL, Lannan CN, Giovannoni SJ, et al. Piscirickettsia salmonis gen. nov., sp. nov., the causative agent of an epizootic disease in salmonid fishes. Int J Syst Bacteriol. 1992;42(1):120–126.
  • Fryer JL, Mauel MJ. The Rickettsia: an emerging group of pathogens in fish. Emerg Infect Dis. 1997;3(2):137–144.
  • Yanez AJ, Silva H, Valenzuela K, et al. Two novel blood-free solid media for the culture of the salmonid pathogen Piscirickettsia salmonis. J Fish Dis. 2013;36(6):587–591.
  • Henriquez M, Gonzalez E, Marshall SH, et al. A novel liquid medium for the efficient growth of the salmonid pathogen Piscirickettsia salmonis and optimization of culture conditions. PLoS ONE. 2013;8(9):e71830.
  • Gomez F, Henriquez V, Marshall SH. Additional evidence of the facultative intracellular nature of the fish bacterial pathogen Piscirickettsia salmonis. Archivos De Med Vet. 2009;41(3):261–267.
  • Eppinger M, McNair K, Zogaj X, et al. Draft genome sequence of the fish pathogen Piscirickettsia salmonis. Genome Announc. 2013;1(6):e00926–00913.
  • Pulgar R, Travisany D, Zuniga A, et al. Complete genome sequence of Piscirickettsia salmonis LF-89 (ATCC VR-1361) a major pathogen of farmed salmonid fish. J Biotechnol. 2015;212:30–31.
  • Yanez AJ, Molina C, Haro RE, et al. Draft genome sequence of virulent strain AUSTRAL-005 of Piscirickettsia salmonis, the etiological agent of piscirickettsiosis. Genome Ann. 2014;2(5):e00990–e00914.
  • Bohle H, Henriquez P, Grothusen H, et al. Comparative genome analysis of two isolates of the fish pathogen Piscirickettsia salmonis from different hosts reveals major differences in virulence-associated secretion systems. Genome Announc. 2014;2(6):e01219–e01214.
  • Fryer JL, Hedrick RP. Piscirickettsia salmonis: a Gram-negative intracellular bacterial pathogen of fish. J Fish Dis. 2003;26(5):251–262.
  • Raoult D, Roux V. Rickettsioses as paradigms of new or emerging infectious diseases. Clin Microbiol Rev. 1997;10(4):614–719.
  • Rozas M, Enriquez R. Piscirickettsiosis and Piscirickettsia salmonis in fish: a review. J Fish Dis. 2014;37(3):163–188.
  • Olivares J, Marshall SH. Determination of minimal concentration of Piscirickettsia salmonis in water columns to establish a fallowing period in salmon farms. J Fish Dis. 2010;33(3):261–266.
  • Smith PA, Pizarro P, Ojeda P, et al. Routes of entry of Piscirickettsia salmonis in rainbow trout Oncorhynchus mykiss. Dis Aquat Org. 1999;37(3):165–172.
  • Almendras FE, Jones SR, Fuentealba C, et al. In vitro infection of a cell line from Ictalurus nebulosus with Piscirickettsia salmonis. Can J Vet Res. 1997;61(1):66–68.
  • McCarthy UM, Bron JE, Brown L, et al. Survival and replication of Piscirickettsia salmonis in rainbow trout head kidney macrophages. Fish Shellfish Immunol. 2008;25(5):477–484.
  • Ramirez R, Gomez FA, Marshall SH. The infection process of Piscirickettsia salmonis in fish macrophages is dependent upon interaction with host-cell clathrin and actin. Fems Microbiol Lett. 2015;362(1):1–8.
  • Rajas V, Galanti N, Bols NC, et al. Productive infection of Piscirickettsia salmonis in macrophages and monocyte-like cells from rainbow trout, a possible survival strategy. J Cell Biochem. 2009;108(3):631–637.
  • Smith PA, Reveco F, Contreras J, et al. Infectivity study of Piscirickettsia salmonis in CHSE-214 cells by confocal and transmission electron microscopy. Bull Eur Asso Fish Pathol. 2010;30(4):128–136.
  • Rojas V, Galanti N, Bols NC, et al. Piscirickettsia salmonis induces apoptosis in macrophages and monocyte-like cells from rainbow trout. J Cell Biochem. 2010;110(2):468–476.
  • Cvitanich JD, Garate NO, Smith CE. The isolation of a rickettsia-like organism causing disease and mortality in Chilean salmonids and its confirmation by Koch’s postulate. J Fish Dis. 1991;14(2):121–145.
  • Skarmeta AM, Henriquez V, Zahr M, et al. Marshall SH. Isolation of a virulent Piscirickettsia salmonis from the brain of naturally infected coho salmon. Bull Eur Asso Fish Pathol. 2000;20(6):261–264.
  • Almendras FE, Fuentealba IC, Frederick Markham RF, et al. Pathogenesis of liver lesions caused by experimental infection with Piscirickettsia salmonis in juvenile Atlantic salmon, Salmo salar L. J Vet Diagn Invest. 2000;12(6):552–557.
  • Turnbull JF. Epitheliocystis and salmonid rickettsial septicaemia. In: Inglis V, Roberts RJ, Bromage NR, editors. Bacterial diseases of fish. New York: Wiley; 1993. p. 237–254.
  • Vadovic P, Fodorova M, Toman R. Structural features of lipid A of Piscirickettsia salmonis, the etiological agent of the salmonid rickettsial septicemia. Acta Virol. 2007;51(4):249–259.
  • Vadovic P, Ihnatko R, Toman R. Composition and structure of lipid A of the intracellular bacteria Piscirickettsia salmonis and Coxiella burnetii. In: Stulik J, Toman R, Butaye P, et al., editors. Bsl3 and Bsl4 agents: proteomics, glycomics, and antigenicity. New York: Wiley-Blackwell; 2011. p. 139–144.
  • Fodorova M, Vadovic P, Skultety L, et al. Structural features of lipopolysaccharide from Rickettsia typhi - The causative agent of endemic typhus. In: Hechemy KE, Oteo JA, Raoult DA, et al., editors. Rickettsioses: from genome to proteome, pathobiology, and rickettsiae as an international threat. New York: Wiley-Blackwell; 2005. p. 259–260.
  • Vinogradov E, Frimmelova M, Toman R. Chemical structure of the carbohydrate backbone of the lipopolysaccharide from Piscirickettsia salmonis. Carbohydr Res. 2013;378:108–113.
  • Veronica Rojas M, Olivares PJ, del Rio R, et al. Characterization of a novel and genetically different small infective variant of Piscirickettsia salmonis. Microb Pathog. 2008;44(5):370–378.
  • Isla A, Haussmann D, Vera T, et al. Identification of the clpB and bipA genes and an evaluation of their expression as related to intracellular survival for the bacterial pathogen Piscirickettsia salmonis. Vet Microbiol. 2014;173(3–4):390–394.
  • Olavarria VH, Gallardo L, Figueroa JE, et al. Lipopolysaccharide primes the respiratory burst of Atlantic salmon SHK-1 cells through protein kinase C-mediated phosphorylation of p47phox. Dev Comp Immunol. 2010;34(12):1242–1253.
  • Marshall SH, Henriquez V, Gomez FA, et al. ISPsa2, the first mobile genetic element to be described and characterized in the bacterial facultative intracellular pathogen Piscirickettsia salmonis. FEMS Micro Lett. 2011;314(1):18–24.
  • Gomez FA, Cardenas C, Henriquez V, et al. Characterization of a functional toxin-antitoxin module in the genome of the fish pathogen Piscirickettsia salmonis. Fems Microbiol Lett. 2011;317(1):83–92.
  • Marshall SH, Gomez FA, Ramirez R, et al. Biofilm generation by Piscirickettsia salmonis under growth stress conditions: a putative in vivo survival/persistence strategy in marine environments. Res Microbiol. 2012;163(8):557–566.
  • Smith PA, Diaz FE, Rojas ME, et al. Effect of Piscirickettsia salmonis inoculation on the ASK continuous cell line. J Fish Dis. 2015;38(3):321–324.
  • Rojas ME, Galleguillos M, Diaz S, et al. Evidence of exotoxin secretion of Piscirickettsia salmonis, the causative agent of piscirickettsiosis. J Fish Dis. 2013;36(8):703–709.
  • Gomez FA, Tobar JA, Henriquez V, et al. Evidence of the presence of a functional dot/icm Type IV-B secretion system in the fish bacterial pathogen Piscirickettsia salmonis. PLoS ONE. 2013;8(1):e54934.
  • Labra A, Arredondo-Zelada O, Flores-Herrera P, et al. In silico identification and characterization of putative Dot/Icm secreted virulence effectors in the fish pathogen Piscirickettsia salmonis. Microb Path. 2016;92:11–18.
  • Oliver C, Valenzuela K, Hernandez M, et al. Characterization and pathogenic role of outer membrane vesicles produced by the fish pathogen Piscirickettsia salmonis under in vitro conditions. Vet Microbiol. 2016;184:94–101.
  • Sernapesca. Informe sanitario de salmonicultura en centros marinos año 2014;2016. Available from: http://www.sernapesca.cl/presentaciones/PPT_Informe_Sanitario_1er_Semestre_2014.pdf
  • Sernapesca. Informe sobre el uso de antimicrobianos en la salmonicultura nacional 2014; 2016. Available from: http://www.aqua.cl/wp-content/uploads/sites/3/2016/06/Informe_sobre _uso _ de_antimicrobianos_-2015-1.pdf
  • Henriquez P, Kaiser M, Bohle H, et al. Comprehensive antibiotic susceptibility profiling of Chilean Piscirickettsia salmonis field isolates. J Fish Dis. 2016;39(4):441–448.
  • Llewellyn MS, Boutin S, Hoseinifar SH, et al. Teleost microbiomes: the state of the art in their characterization, manipulation and importance in aquaculture and fisheries. Front Microbiol. 2014;5:207.
  • He S, Zhou Z, Liu Y, et al. Effects of the antibiotic growth promoters flavomycin and florfenicol on the autochthonous intestinal microbiota of hybrid tilapia (Oreochromis niloticus female symbol x O. aureus male symbol). Arch Microbiol. 2010;192(12):985–994.
  • Navarrete P, Mardones P, Opazo R, et al. Oxytetracycline treatment reduces bacterial diversity of intestinal microbiota of Atlantic salmon. J Aquat Anim Health. 2008;20(3):177–183.
  • Henriquez P, Bohle H, Bustamante F, et al. Polymorphism in gyrA is associated to quinolones resistance in Chilean Piscirickettsia salmonis field isolates. J Fish Dis. 2015;38(4):415–418.
  • B CD, Meena DK, Behera BK, et al. Probiotics in fish and shellfish culture: immunomodulatory and ecophysiological responses. Fish Physiol Biochem. 2014;40(3):921–971.
  • Zorriehzahra MJ, Delshad ST, Adel M, et al. Probiotics as beneficial microbes in aquaculture: an update on their multiple modes of action: a review. Vet Q. 2016. doi:10.1080/01652176.2016.1172132. [Epub ahead of print]
  • Araujo C, Munoz-Atienza E, Perez-Sanchez T, et al. Nisin Z production by Lactococcus lactis subsp. cremoris WA2-67 of aquatic origin as a defense mechanism to protect rainbow trout (Oncorhynchus mykiss, Walbaum) against Lactococcus garvieae. Mar Biotechnol (NY). 2015;17(6):820–830.
  • Grave K, Engelstad M, Soli NE, et al. Utilization of antibacterial drugs in salmonid farming in Norway during 1980-1988. Aquaculture. 1990;86:347–358.
  • Birkbeck TH, Rennie S, Hunter D, et al. Infectivity of a Scottish isolate of Piscirickettsia salmonis for Atlantic salmon Salmo salar and immune response of salmon to this agent. Dis Aquat Org. 2004;60(2):97–103.
  • Embregts CW, Forlenza M. Oral vaccination of fish: lessons from humans and veterinary species. Dev Comp Immunol. 2016;64:118–137.
  • Midtlyng PJ, Hendriksen C, Balks E, et al. Three Rs approaches in the production and quality control of fish vaccines. Biologicals. 2011;39(2):117–128.
  • Smith PL, Lannan CN, Garces LH, et al. Piscirickettsiosis: a bacterin field trial in coho salmon (Oncorhynchus kisutch). Bull Eur Assoc Fish Pathol. 1995;15:137–141.
  • Tobar JA, Jerez S, Caruffo M, et al. Oral vaccination of Atlantic salmon (Salmo salar) against salmonid rickettsial septicaemia. Vaccine. 2011;29(12):2336–2340.
  • Wilhelm V, Miquel A, Burzio LO, et al. A vaccine against the salmonid pathogen Piscirickettsia salmonis based on recombinant proteins. Vaccine. 2006;24(23):5083–5091.
  • Kuzyk MA, Burian J, Machander D, et al. An efficacious recombinant subunit vaccine against the salmonid rickettsial pathogen Piscirickettsia salmonis. Vaccine. 2001;19(17–19):2337–2344.
  • Leal J, Woywood D. Piscirickettsiosis en Chile: Avances y perspectivas para su control. SalmoCiencia. 2007;2:34–42.
  • Jakob E, Stryhn H, Yu J, et al. Epidemiology of Piscirickettsiosis on selected Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss) salt water aquaculture farms in Chile. Aquaculture. 2014;433:288–294.
  • Tobar I, Arancibia S, Torres C, et al. Successive oral immunizations against Piscirickettsia salmonis and infectious salmon anemia virus are required to maintain a long-term protection in farmed salmonids. Front Immunol. 2015;6:244.
  • Zhu LY, Nie L, Zhu G, et al. Advances in research of fish immune-relevant genes: a comparative overview of innate and adaptive immunity in teleosts. Dev Comp Immunol. 2013;39(1–2):39–62.
  • Sunyer JO. Fishing for mammalian paradigms in the teleost immune system. Nat Immunol. 2013;14(4):320–326.
  • Fischer U, Koppang EO, Nakanishi T. Teleost T and NK cell immunity. Fish Shellfish Immunol. 2013;35(2):197–206.
  • Esteban MA, Cuesta A, Chaves-Pozo E, et al. Phagocytosis in teleosts. Implications of the new cells involved. Biology (Basel). 2015;4(4):907–922.
  • Havixbeck JJ, Barreda DR. Neutrophil development, migration, and function in teleost fish. Biology (Basel). 2015;4(4):715–734.
  • Zhu LY, Shao T, Nie L, et al. Evolutionary implication of B-1 lineage cells from innate to adaptive immunity. Mol Immunol. 2016;69:123–130.
  • Magnadottir B. Immunological control of fish diseases. Mar Biotechnol (NY). 2010;12(4):361–379.
  • Manuel Yanez J, Bangera R, Paul Lhorente J, et al. Quantitative genetic variation of resistance against Piscirickettsia salmonis in Atlantic salmon (Salmo salar). Aquaculture. 2013;414:155–159.
  • Boltana S, Roher N, Goetz FW, et al. PAMPs, PRRs and the genomics of gram negative bacterial recognition in fish. Dev Comp Immunol. 2011;35(12):1195–1203.
  • Arnemo M, Kavaliauskis A, Gjoen T. Effects of TLR agonists and viral infection on cytokine and TLR expression in Atlantic salmon (Salmo salar). Dev Comp Immunol. 2014;46(2):139–145.
  • Lee PT, Zou J, Holland JW, et al. Identification and characterisation of TLR18-21 genes in Atlantic salmon (Salmo salar). Fish Shellfish Immunol. 2014;41(2):549–559.
  • Salazar C, Haussmann D, Kausel G, et al. Molecular cloning of Salmo salar Toll-like receptors (TLR1, TLR22, TLR5M and TLR5S) and expression analysis in SHK-1 cells during Piscirickettsia salmonis infection. J Fish Dis. 2016;39(2):239–248.
  • Tsoi S, Park KC, Kay HH, et al. Identification of a transcript encoding a soluble form of Toll-Like Receptor 5 (TLR5) in Atlantic salmon during Aeromonas salmonicida infection. Vet Immunol Immunopathol. 2006;109(1–2):183–187.
  • Pena B, Isla A, Haussmann D, et al. Immunostimulatory effect of salmon prolactin on expression of Toll-like receptors in Oncorhynchus mykiss infected with Piscirickettsia salmonis. Fish Physiol Biochem. 2016;42(2):509–516.
  • Magnadottir B, Gudmundsdottir BK. A comparison of total and specific immunoglobulin levels in healthy Atlantic salmon (Salmo salar l) and in salmon naturally infected with Aeromonas salmonicida subsp. achromogenes. Vet Immunol Immunopathol. 1992;32(1–2):179–189.
  • Braun R, Arnesen JA, Rinne A, et al. Immunohistological localization of trypsin in mucus-secreting cell-layers of Atlantic salmon, Salmo salar l. J Fish Dis. 1990;13(3):233–238.
  • Firth KJ, Johnson SC, Ross NW. Characterization of proteases in the skin mucus of Atlantic salmon (Salmo salar) infected with the salmon louse (Lepeophtheirus salmonis) and in whole-body louse homogenate. J Parasitol. 2000;86(6):1199–1205.
  • Secombes CJ. The non-specific immune system: cellular defences. In: Iwama G, Teruyuki N, editors. The fish immune system. Organism, pathogen and environment. Sydney: Academic Press; 1996. p. 63–103.
  • Haussmann D, Figueroa J. Glandular kallikrein in the innate immune system of Atlantic salmon (Salmo salar). Vet Immunol Immunopathol. 2011;139(2–4):119–127.
  • Ye J, Kaattari IM, Ma C, et al. The teleost humoral immune response. Fish Shellfish Immunol. 2013;35(6):1719–1728.
  • Wang T, Secombes CJ. The cytokine networks of adaptive immunity in fish. Fish Shellfish Immunol. 2013;35(6):1703–1718.
  • Nakanishi T, Toda H, Shibasaki Y, et al. Cytotoxic T cells in teleost fish. Dev Comp Immunol. 2011;35(12):1317–1323.
  • Fillatreau S, Six A, Magadan S, et al. The astonishing diversity of Ig classes and B cell repertoires in teleost fish. Front Immunol. 2013;4:28.
  • Salinas I. The mucosal immune system of teleost fish. Biology (Basel). 2015;4(3):525–539.
  • Annunziato F, Romagnani C, Romagnani S. The 3 major types of innate and adaptive cell-mediated effector immunity. J Allergy Clin Immunol. 2015;135(3):626–635.
  • Cowley SC, Elkins KL. Immunity to Francisella. Front Microbiol. 2011;2:26.
  • Walker DH, Dumler JS. The role of CD8 T lymphocytes in rickettsial infections. Sem Immunopathol. 2015;37(3):289–299.
  • Crocquet-Valdes PA, Diaz-Montero CM, Feng HM, et al. Immunization with a portion of rickettsial outer membrane protein A stimulates protective immunity against spotted fever rickettsiosis. Vaccine. 2001;20(5–6):979–988.
  • Diaz-Montero CM, Feng HM, Crocquet-Valdes PA, et al. Identification of protective components of two major outer membrane proteins of spotted fever group Rickettsiae. Am J Trop Med Hyg. 2001;65(4):371–378.
  • Walker DH. The realities of biodefense vaccines against Rickettsia. Vaccine. 2009;27:D52–D55.
  • Walker DH, Olano JP, Feng HM. Critical role of cytotoxic T lymphocytes in immune clearance of Rickettsial infection. Infect Immun. 2001;69(3):1841–1846.
  • Hafner LM, Wilson DP, Timms P. Development status and future prospects for a vaccine against Chlamydia trachomatis infection. Vaccine. 2014;32(14):1563–1571.
  • Tacchi L, Bron JE, Taggart JB, et al. Multiple tissue transcriptomic responses to Piscirickettsia salmonis in Atlantic salmon (Salmo salar). Physiol Genomics. 2011;43(21):1241–1254.
  • Pulgar R, Hodar C, Travisany D, et al. Transcriptional response of Atlantic salmon families to Piscirickettsia salmonis infection highlights the relevance of the iron-deprivation defence system. Bmc Genomics. 2015;16:495.
  • Pandey G. Overview of fish cell lines and their uses. Int J Pharma Res Sci. 2013;2(3):580–590.
  • Pridgeon JW, Klesius P. Major bacterial diseases in aquaculture and their vaccine development. CAB Reviews. 2012;7:048. Available from: http://naldc.nal.usda.gov/download/55894/PDF
  • Brudeseth BE, Wiulsrod R, Fredriksen BN, et al. Status and future perspectives of vaccines for industrialised fin-fish farming. Fish Shellfish Immunol. 2013;35(6):1759–1768.
  • Gudding R, Lillehaug A, Evensen O, editors. Fish vaccination. NJ: Wiley-Blackwell; 2014.
  • van der Pol L, Stork M, van der Ley P. Outer membrane vesicles as platform vaccine technology. Biotechnol J. 2015;10(11):1689–1706.
  • Plant KP, LaPatra SE, Cain KD. Vaccination of rainbow trout, Oncorhynchus mykiss (Walbaum), with recombinant and DNA vaccines produced to Flavobacterium psychrophilum heat shock proteins 60 and 70. J Fish Dis. 2009;32(6):521–534.
  • Chen M, Wang R, Li L, et al. Immunological enhancement action of endotoxin-free tilapia heat shock protein 70 against Streptococcus iniae. Cell Immunol. 2014;290(1):1–9.
  • Kuzyk MA, Thorton JC, Kay WW. Antigenic characterization of the salmonid pathogen Piscirickettsia salmonis. Infect Immun. 1996;64(12):5205–5210.
  • Barnes MN, Landolt ML, Powell DB, et al. Purification of Piscirickettsia salmonis and partial characterization of antigens. Dis Aquat Org. 1998;33(1):33–41.
  • Smith PA, Contreras JR, Larenas JJ, et al. Immunization with bacterial antigens: piscirickettsiosis. Dev Biol Stand. 1997;90:161–166.
  • Kuzyk MA, Burian J, Thornton JC, et al. OspA, a lipoprotein antigen of the obligate intracellular bacterial pathogen Piscirickettsia salmonis. J Mol Microbiol Biotechnol. 2001;3(1):83–93.
  • Miquel A, Muller I, Ferrer P, et al. Immunoresponse of Coho salmon immunized with a gene expression library from Piscirickettsia salmonis. Biol Res. 2003;36(3–4):313–323.
  • Wilhelm V, Huaracan B, Martinez R, et al. Cloning and expression of the coding regions of the heat shock roteins HSP10 and HSP16 from Piscirickettsia salmonis. Biol Res. 2003;36(3–4):421–428.
  • Wilhelm V, Morales C, Martinez R, et al. Isolation and expression of the genes coding for the membrane bound transglycosylase B (MltB) and the transferrin binding protein B (TbpB) of the salmon pathogen Piscirickettsia salmonis. Biol Res. 2004;37(4):783–793.
  • Wilhelm V, Soza C, Martinez R, et al. Production and immune response of recombinant Hsp60 and Hsp70 from the salmon pathogen Piscirickettsia salmonis. Biol Res. 2005;38(1):69–82.
  • Salonius K, Siderakis C, MacKinnon AM, et al. Use of Arthrobacter davidanieli as a live vaccine against Renibacterium salmoninarum and Piscirickettsia salmonis in salmonids. Dev Biol (Basel). 2005;121:189–197.
  • Guzman F, Fernando G, Henriquez V, et al. Evaluation of immunogenic peptides derived from a highly protective antigenic protein of Piscirickettsia salmonis as a potential source for vaccine development. New Biotechnol. 2009;25:S37–S37.
  • Schubert-Unkmeir A, Christodoulides M. Genome-based bacterial vaccines: current state and future outlook. BioDrugs. 2013;27(5):419–430.
  • Gilchuk P, Hill TM, Wilson JT, et al. Discovering protective CD8 T cell epitopes–no single immunologic property predicts it! Curr Opin Immunol. 2015;34:43–51.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.