604
Views
11
CrossRef citations to date
0
Altmetric
Review

Current developments and prospects on human metapneumovirus vaccines

Pages 419-431 | Received 19 Oct 2016, Accepted 13 Jan 2017, Published online: 27 Jan 2017

References

  • Williams BG, Gouws E, Boschi-Pinto C, et al. Estimates of world-wide distribution of child deaths from acute respiratory infections. Lancet Infect Dis. 2002;2:25–32.
  • Ruuskanen O, Lahti E, Jennings LC, et al. Viral pneumonia. Lancet. 2011;377(9773):1264–1275.
  • World Health Organization. Maternal, newborn, child and adolescent health. [cited 2016 Dec 5]. Available from: http://www.who.int/maternal_child_adolescent/news_events/news/2011/pneumonia/en/
  • Manoha C, Espinosa S, Aho SL, et al. Epidemiological and clinical features of hMPV, RSV and RVs infections in young children. J Clin Virol. 2007;38(3):221–226.
  • Ren L, Xiang Z, Guo L, et al. Viral infections of the lower respiratory tract. Curr Infect Dis Rep. 2012;14(3):284–291.
  • Rhedin S, Lindstrand A, Hjelmgren A, et al. Respiratory viruses associated with community-acquired pneumonia in children: matched case–control study. Thorax. 2015;70(9):847–853.
  • Fabbiani M, Terrosi C, Martorelli B, et al. Epidemiological and clinical study of viral respiratory tract infections in children from Italy. J Med Virol. 2009;81(4):750–756.
  • Groome MJ, Moyes J, Cohen C, et al. Human metapneumovirus-associated severe acute respiratory illness hospitalisation in HIV-infected and HIV-uninfected South African children and adults. J Clin Virol. 2015;69:125–132.
  • Watanabe ASA, Carraro E, Candeias JM, et al. Viral etiology among the elderly presenting acute respiratory infection during the influenza season. Rev Soc Bras Med Trop. 2011;44(1):18–21.
  • Falsey AR, McElhaney JE, Beran J, et al. Respiratory syncytial virus and other respiratory viral infections in older adults with moderate to severe influenza-like illness. J Infect Dis. 2014;209(12):1873–1881.
  • Lefebvre A, Manoha C, Bour J, et al. Human metapneumovirus in patients hospitalized with acute respiratory infections : a meta-analysis. J Clin Virol. 2016;81:68–77.
  • McCracken JP, Arvelo W, Ortiz J, et al. Comparative epidemiology of human metapneumovirus and respiratory syncytial virus-associated hospitalizations in Guatemala. Influenza Other Respi Viruses. 2014;8(4):414–421.
  • Ramirez JB, Dominguez PP, Benito GR, et al. Human respiratory syncytial virus and metapneumovirus in patients with acute respiratory infection in Colombia, 2000 – 2011. Pan Am J Public Heal. 2014;36(6):101–109.
  • Moattari A, Aleyasin S, Emami A, et al. The prevalence of human metapneumovirus and respiratory syncytial virus and coinfection with both in hospitalized children with acute respiratory infection in south of Iran. Arch Pediatr Infect Dis. 2015;3(3):3–7.
  • Haynes AK, Fowlkes AL, Schneider E, et al. Human metapneumovirus circulation in the United States, 2008 to 2014. Pediatrics. 2016;137(5):e20152927.
  • Davis CR, Stockmann C, Pavia AT, et al. Incidence, morbidity, and costs of human metapneumovirus infection in hospitalized children. J Pediatric Infect Dis Soc. 2015;5(3):303–311.
  • van der Hoek L, Pyrc K, Jebbink MF, et al. Identification of a new human coronavirus. Nat Med. 2004;10(4):368–373.
  • Woo PC, Lau SK, Chu CM, et al. Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia. J Virol. 2005;79(2):884–895.
  • van den Hoogen BG, de Jong JC, Groen J, et al. A newly discovered human pneumovirus isolated from young children with respiratory tract disease. Nat Med. 2001;7(6):719–724.
  • Malhotra B, Swamy MA, Reddy PVJ, et al. Evaluation of custom multiplex real - time RT-PCR in comparison to fast - track diagnostics respiratory 21 pathogens kit for detection of multiple respiratory viruses. Virol J. 2016;13(1):91.
  • Zhang D, Feng Z, Zhao M, et al. Clinical evaluation of a single-tube multiple RT-PCR assay for the detection of 13 common virus types/subtypes associated with acute respiratory infection. PLoS One. 2016;1(4):e0152702.
  • Allander T, Tammi MT, Eriksson M, et al. Cloning of a human parvovirus by molecular screening of respiratory tract samples. PNAS. 2005;102(36):12891–12896.
  • Afonso CL, Amarasinghe GK, Bányai K, et al. Taxonomy of the order Mononegavirales: update 2016. Arch Virol. 2016;161(8):2351–2360.
  • Skiadopoulos MH, Biacchesi S, Buchholz UJ, et al. The two major human metapneumovirus genetic lineages are highly related antigenically, and the fusion (F) protein is a major contributor to this antigenic relatedness. J Virol. 2004;78(13):6927–6937.
  • Wyde PR, Chetty SN, Jewell AM, et al. Development of a cotton rat-human metapneumovirus (hMPV) model for identifying and evaluating potential hMPV antivirals and vaccines. Antiviral Res. 2005;66(1):57–66.
  • Kuiken T, van den Hoogen BG, van Riel DA, et al. Experimental human metapneumovirus infection of cynomolgus macaques (Macaca fascicularis) results in virus replication in ciliated epithelial cells and pneumocytes with associated lesions throughout the respiratory tract. Am J Pathol. 2004;164(6):1893–1900.
  • Spann KM, Baturcam E, Schagen J, et al. Viral and host factors determine innate immune responses in airway epithelial cells from children with wheeze and atopy. Thorax. 2014;69(10):918–925.
  • Kolli D, Gupta MR, Sbrana E, et al. Alveolar macrophages contribute to the pathogenesis of human metapneumovirus infection while protecting against respiratory syncytial virus infection. Am J Respir Cell Mol Biol. 2014;51(4):502–515.
  • Guerrero-Plata A, Casola A, Suarez G, et al. Differential response of dendritic cells to human metapneumovirus and respiratory syncytial virus. Am J Respir Cell Mol Biol. 2006;34(3):320–329.
  • Céspedes PF, Gonzalez PA, Kalergis AM. Human metapneumovirus keeps dendritic cells from priming antigen-specific naive T cells. Immunology. 2013;139(3):366–376.
  • Le Nouën C, Hillyer P, Brock LG, et al. Human metapneumovirus SH and G glycoproteins inhibit macropinocytosis-mediated entry into human dendritic cells and reduce CD4+ T cell activation. J Virol. 2014;88(11):6453–6469.
  • Zeng SZ, Xiao NG, Zhong LL, et al. Clinical features of human metapneumovirus genotypes in children with acute lower respiratory tract infection in Changsha, China. J Med Virol. 2015;87(11):1839–1845.
  • Ditt V, Lüsebrink J, Tillmann RL, et al. Respiratory infections by HMPV and RSV are clinically indistinguishable but induce different host response in aged individuals. PLoS One. 2011;6(1):e16314.
  • Boivin G, Abed Y, Pelletier G, et al. Virological features and clinical manifestations associated with human metapneumovirus: a new paramyxovirus responsible for acute respiratory tract infections in all age groups. J Infect Dis. 2002;186:1330–1334.
  • Honda H, Iwahashi J, Kashiwagi T, et al. Outbreak of human metapneumovirus infection in elderly inpatients in Japan. J Am Geriatr Soc. 2006;54:177–180.
  • Louie JK, Schnurr DP, Pan CY, et al. A summer outbreak of human metapneumovirus infection in a long-term-care facility. J Infect Dis. 2007;196:705–708.
  • Boivin G, De Serres G, Hamelin ME, et al. An outbreak of severe respiratory tract infection due to human metapneumovirus in a long-term care facility. Clin Infect Dis. 2007;44(9):1152–1158.
  • Chiu CY, Alizadeh AA, Rouskin S, et al. Diagnosis of a critical respiratory illness caused by human metapneumovirus by use of a pan-virus microarray. J Clin Microbiol. 2007;45(7):2340–2343.
  • Darniot M, Pitoiset C, Petrella T, et al. Age-associated aggravation of clinical disease after primary metapneumovirus infection of BALB/c mice. J Virol. 2009;83(7):3323–3332.
  • Lüsebrink J, Wiese C, Thiel A, et al. High seroprevalence of neutralizing capacity against human metapneumovirus in all age groups studied in Bonn, Germany. Clin Vaccine Immunol. 2010;17(3):481–484.
  • Parsania M, Poopak B, Pouriayevali MH, et al. Detection of human metapneumovirus and respiratory syncytial virus by real-time polymerase chain reaction among hospitalized young children in Iran. Jundishapur J Microbiol. 2016;9(3):7–11.
  • Mullins JA, Erdman DD, Weinberg GA, et al. Human metapneumovirus infection among children hospitalized with acute respiratory illness. Emerg Infect Dis. 2004;10(4):700–705.
  • Peiris JSM, Tang WH, Chan KH, et al. Children with respiratory disease associated with metapneumovirus in Hong Kong. Emerg Infect Dis. 2003;9(6):628–633.
  • Prins JM, Wolthers KC. Human metapneumovirus: a new pathogen in children and adults. Neth J Med. 2004;62(6):177–179.
  • Bosis S, Esposito S, Niesters HG, et al. Impact of human metapneumovirus in childhood: comparison with respiratory syncytial virus and influenza viruses. J Med Virol. 2005;75(1):101–104.
  • Cusi MG, Terrosi C, Kleines M, et al. RSV and HMPV seroprevalence in Tuscany (Italy) and North-Rhine Westfalia (Germany) in the winter season 2009/2010. Influenza Other Respir Viruses. 2011;5(6):380–381.
  • Ebihara T, Endo R, Kikuta H, et al. Comparison of the seroprevalence of human metapneumovirus and human respiratory syncytial virus. J Med Virol. 2004;72(2):304–306.
  • Wolf DG, Zakay-Rones Z, Fadeela A, et al. High seroprevalence of human metapneumovirus among young children in Israel. J Infect Dis. 2003;188:1865–1867.
  • Thammawat S, Sadlon TA, Hallsworth PG, et al. Role of cellular glycosaminoglycans and charged regions of viral G protein in human metapneumovirus infection. J Virol. 2008;82(23):11767–11774.
  • Adamson P, Thammawat S, Muchondo G, et al. Diversity in glycosaminoglycan binding amongst hMPV G protein lineages. Viruses. 2012;4(12):3785–3803.
  • Cseke G, Maginnis MS, Cox RG, et al. Integrin alphavbeta1 promotes infection by human metapneumovirus. PNAS. 2009;106(5):1566–1571.
  • Wei Y, Zhang Y, Cai H, et al. Roles of the putative integrin-binding motif of the human metapneumovirus fusion (F) protein in cell-cell fusion, viral infectivity, and pathogenesis. J Virol. 2014;88(8):4338–4352.
  • Cox RG, Livesay SB, Johnson M, et al. The human metapneumovirus fusion protein mediates entry via an interaction with RGD-binding integrins. J Virol. 2012;86(22):12148–12160.
  • Chang A, Masante C, Buchholz UJ, et al. Human metapneumovirus (HMPV) binding and infection are mediated by interactions between the HMPV fusion protein and heparan sulfate. J Virol. 2012;86(6):3230–3243.
  • Gillespie L, Gerstenberg K, Ana-Sosa-Batiz F, et al. DC-SIGN and L-SIGN are attachment factors that promote infection of target cells by human metapneumovirus in the presence or absence of cellular glycosaminoglycans. J Virol. 2016;90(17):7848–7863.
  • Klimyte EM, Smith SE, Oreste P, et al. Inhibition of human metapneumovirus binding to heparan sulfate blocks infection in human lung cells and airway tissues. J Virol. 2016;90(20):9237–9250.
  • Yang H, He H, Tan B, et al. Human metapneumovirus uses endocytosis pathway for host cell entry. Mol Cell Probes. 2016;30(4):231–237.
  • Cox RG, Mainou BA, Johnson M, et al. Human metapneumovirus is capable of entering cells by fusion with endosomal membranes. PLoS Pathog. 2015;11(12):e1005303.
  • Owor BE, Masankwa GN, Mwango LC, et al. Human metapneumovirus epidemiological and evolutionary patterns in Coastal Kenya, 2007–11. BMC Infect Dis. 2016;16(1):301.
  • Schowalter RM, Chang A, Robach JG, et al. Low-pH triggering of human metapneumovirus fusion: essential residues and importance in entry. J Virol. 2009;83(3):1511–1522.
  • Herfst S, Mas V, Ver LS, et al. Low-pH-induced membrane fusion mediated by human metapneumovirus F protein is a rare, strain-dependent phenomenon. J Virol. 2008;82(17):8891–8895.
  • Deng J, Ma Z, Huang W, et al. Respiratory virus multiplex RT-PCR assay sensitivities and influence factors in hospitalized children with lower respiratory tract infections. Virol Sin. 2013;28(2):97–102.
  • Loo LH, Tan BH, Ng LM, et al. Human metapneumovirus in children, Singapore. Emerg Infect Dis. 2007;13(9):1396–1398.
  • Ludewick HP, Abed Y, Van Niekerk N, et al. Human metapneumovirus genetic variability, South Africa. Emerg Infect Dis. 2005;11(7):1074–1078.
  • Zhang C, Du LN, Zhang ZY, et al. Detection and genetic diversity of human metapneumovirus in hospitalized children with acute respiratory infections in Southwest China. J Clin Microbiol. 2012;50(8):2714–2719.
  • Banerjee S, Sullender WM, Choudekar A, et al. Detection and genetic diversity of human metapneumovirus in hospitalized children with acute respiratory infections in India. J Med Virol. 2011;83(10):1799–1810.
  • Feuillet F, Lina B, Rosa-Calatrava M, et al. Ten years of human metapneumovirus research. J Clin Virol. 2012;53(2):97–105.
  • Vargas SO, Kozakewich HP, Perez-Atayde AR, et al. Pathology of human metapneumovirus infection: insights into the pathogenesis of a newly identified respiratory virus. Pediatr Dev Pathol. 2004;7(5):478–486.
  • Aerts L, Cavanagh MH, Dubois J, et al. Effect of in vitro syncytium formation on the severity of human metapneumovirus disease in a murine model. PLoS One. 2015;10(3):1–18.
  • Márquez-Escobar VA, Tirado-Mendoza R, Noyola DE, et al. HRA2pl peptide: a fusion inhibitor for human metapneumovirus produced in tobacco plants by transient transformation. Planta. 2015;242(1):69–76.
  • Deffrasnes C, Hamelin ME, Prince GA, et al. Identification and evaluation of a highly effective fusion inhibitor for human metapneumovirus. Antimicrob Agents Chemother. 2008;52(1):279–287.
  • Bagnoli F, Baudner B, Mishra RP, et al. Designing the next generation of vaccines for global public health. OMICS. 2011;15(9):545–566.
  • Marshall V, Baylor NW. Food and Drug Administration regulation and evaluation of vaccines. Pediatrics. 2011;127:S23–S30.
  • Tollefson SJ, Cox RG, Williams JV. Studies of culture conditions and environmental stability of human metapneumovirus. Virus Res. 2010;151(1):54–59.
  • Reina J, Ferres F, Alcoceba E, et al. Comparison of different cell lines and incubation times in the isolation by the shell vial culture of human metapneumovirus from pediatric respiratory samples. J Clin Virol. 2007;40(1):46–49.
  • Landry ML, Ferguson D, Cohen S, et al. Detection of human metapneumovirus in clinical samples by immunofluorescence staining of shell vial centrifugation cultures prepared from three different cell lines. J Clin Microbiol. 2005;43(4):1950–1952.
  • Bao X, Liu T, Shan Y, et al. Human metapneumovirus glycoprotein G inhibits innate immune responses. PLoS Pathog. 2008;4(5):e1000077.
  • Williams JV, Tollefson SJ, Johnson JE, et al. The cotton rat (Sigmodon hispidus) is a permissive small animal model of human metapneumovirus infection, pathogenesis, and protective immunity. Society. 2005;79(17):10944–10951.
  • Zhang Y, Niewiesk S, Li J. Small animal models for human metapneumovirus: cotton rat is more permissive than hamster and mouse. Pathogens. 2014;3(3):633–655.
  • Alvarez R, Harrod KS, Shieh WJ, et al. Human metapneumovirus persists in BALB/c mice despite the presence of neutralizing antibodies. J Virol. 2004;78(24):14003–14011.
  • MacPhail M, Schickli JH, Tang RS, et al. Identification of small-animal and primate models for evaluation of vaccine candidates for human metapneumovirus (hMPV) and implications for hMPV vaccine design. J Gen Virol. 2004;85(6):1655–1663.
  • Kim HW, Canchola JG, Brandt CD, et al. Respiratory syncytial virus disease in infants despite prior administration of antigenic inactivated vaccine. Am J Epidemiol. 1969;89(4):422–434.
  • Yim KC, Cragin RP, Boukhvalova MS, et al. Human metapneumovirus: enhanced pulmonary disease in cotton rats immunized with formalin-inactivated virus vaccine and challenged. Vaccine. 2007;25(27):5034–5040.
  • de Swart RL, van den Hoogen BG, Kuiken T, et al. Immunization of macaques with formalin-inactivated human metapneumovirus induces hypersensitivity to hMPV infection. Vaccine. 2007;25(51):8518–8528.
  • Herfst S, de Graaf M, Schrauwen EJ, et al. Generation of temperature-sensitive human metapneumovirus strains that provide protective immunity in hamsters. J Gen Virol. 2008;89(7):1553–1562.
  • Tang RS, Mahmood K, MacPhail M, et al. A host-range restricted parainfluenza virus type 3 (PIV3) expressing the human metapneumovirus (hMPV) fusion protein elicits protective immunity in African green monkeys. Vaccine. 2005;23(14):1657–1667.
  • Liu P, Shu Z, Qin X, et al. A live attenuated human metapneumovirus vaccine strain provides complete protection against homologous viral infection and cross-protection against heterologous viral infection in BALB/c mice. Clin Vaccine Immunol. 2013;20(8):1246–1254.
  • de Graaf M, Schrauwen EJA, Herfst S, et al. Fusion protein is the main determinant of metapneumovirus host tropism. J Gen Virol. 2009;90(6):1408–1416.
  • Mok H, Tollefson SJ, Podsiad AB, et al. An alphavirus replicon-based human metapneumovirus vaccine is immunogenic and protective in mice and cotton rats. J Virol. 2008;82(22):11410–11418.
  • Bates JT, Pickens JA, Schuster JE, et al. Immunogenicity and efficacy of alphavirus-derived replicon vaccines for respiratory syncytial virus and human metapneumovirus in nonhuman primates. Vaccine. 2016;34(7):950–956.
  • Cseke G, Wright DW, Tollefson SJ, et al. Human metapneumovirus fusion protein vaccines that are immunogenic and protective in cotton rats. J Virol. 2007;81(2):698–707.
  • Herfst S, de Graaf M, Schrauwen EJ, et al. Immunization of Syrian golden hamsters with F subunit vaccine of human metapneumovirus induces protection against challenge with homologous or heterologous strains. J Gen Virol. 2007;88(10):2702–2709.
  • Lévy C, Aerts L, Hamelin MÈ, et al. Virus-like particle vaccine induces cross-protection against human metapneumovirus infections in mice. Vaccine. 2013;31(25):2778–2785.
  • Cox RG, Erickson JJ, Hastings AK, et al. Human metapneumovirus virus-like particles induce protective B and T cell responses in a mouse model. J Virol. 2014;88(11):6368–6379.
  • Wen X, Pickens J, Mousa JJ, et al. A chimeric pneumovirus fusion protein carrying neutralizing epitopes of both MPV and RSV. PLoS One. 2016;11(5):e0155917.
  • Buchholz UJ, Biacchesi S, Pham QN, et al. Deletion of M2 gene open reading frames 1 and 2 of human metapneumovirus: effects on RNA synthesis, attenuation, and immunogenicity. J Virol. 2005;79(11):6588–6597.
  • Cai H, Zhang Y, Lu M, et al. Phosphorylation of human metapneumovirus M2-1 protein upregulates viral replication and pathogenesis. J Virol. 2016;90(16):7323–7338.
  • Aerts L, Aume CR, Carbonneau J, et al. Adjuvant effect of the human metapneumovirus (HMPV) matrix protein in HMPV subunit vaccines. J Gen Virol. 2015;96(4):767–774.
  • Biacchesi S, Skiadopoulos MH, Yang L, et al. Recombinant human metapneumovirus lacking the small hydrophobic SH and/or attachment G glycoprotein: deletion of G yields a promising vaccine candidate. J Virol. 2004;78(23):12877–12887.
  • Hastings AK, Amato KR, Wen SC, et al. Human metapneumovirus small hydrophobic (SH) protein downregulates type I IFN pathway signaling by affecting STAT1 expression and phosphorylation. Virology. 2016;494:248–256.
  • Biacchesi S, Pham QN, Skiadopoulos MH, et al. Infection of nonhuman primates with recombinant human metapneumovirus lacking the SH, G, or M2-2 protein categorizes each as a nonessential accessory protein and identifies vaccine candidates. J Virol. 2005;79(19):12608–12613.
  • Pham QN, Biacchesi S, Skiadopoulos MH, et al. Chimeric recombinant human metapneumoviruses with the nucleoprotein or phosphoprotein open reading frame replaced by that of avian metapneumovirus exhibit improved growth in vitro and attenuation in vivo. J Virol. 2005;79(24):15114–15122.
  • Herd KA, Mahalingam S, Mackay IM, et al. Cytotoxic T-Lymphocyte epitope vaccination protects against human metapneumovirus infection and disease in mice. J Virol. 2006;80(4):2034–2044.
  • Hastings AK, Gilchuk P, Joyce S, et al. Novel HLA-A2-restricted human metapneumovirus epitopes reduce viral titers in mice and are recognized by human T cells. Vaccine. 2016;34(24):2663–2670.
  • Li X, Guo L, Kong M, et al. Design and evaluation of a multi-epitope peptide of human metapneumovirus. Intervirology. 2016;58(6):403–412.
  • Kitanovski L, Kopriva S, Pokorn M, et al. Treatment of severe human metapneumovirus (hMPV) pneumonia in an immunocompromised child with oral ribavirin and IVIG. J Pediatr Hematol Oncol. 2013;35(7):e311–3.
  • Shachor-Meyouhas Y, Ben-Barak I, Kassis A. Treatment with oral ribavirin and ivig of severe human metapneumovirus pneumonia (HMPV) in immune compromised child. Pediatr Blood Cancer. 2011;57(2):350–351.
  • Rasmussen LK, Schuette J, Spaeder MC. Albuterol use in children hospitalized with human metapneumovirus respiratory infection. Int J Pediatr. 2016;2016:7021943.
  • Talaat KR, Karron RA, Thumar B, et al. Experimental infection of adults with recombinant wild-type human metapneumovirus. J Infect Dis. 2013;208(10):1669–1678.
  • Hernández M, Rosas G, Cervantes J, et al. Transgenic plants: a 5-year update on oral antipathogen vaccine development. Expert Rev Vaccines. 2014;13(12):1523–1536.
  • Rosales-Mendoza S, Salazar-González JA. Immunological aspects of using plant cells as delivery vehicles for oral vaccines. Expert Rev Vaccines. 2014;13(6):737–749.
  • Rosales-Mendoza S, Angulo C, Meza B. Food-grade organisms as vaccine biofactories and oral delivery vehicles. Trends Biotechnol. 2016;34(2):124–136.
  • Grabowski GA, Golembo M, Shaaltiel Y. Taliglucerase alfa: an enzyme replacement therapy using plant cell expression technology. Mol Genet Metab. 2014;112(1):1–8.
  • Rosales-Mendoza S, Tello-Olea MA. Carrot cells: a pioneering platform for biopharmaceuticals production. Mol Biotechnol. 2015;57(3):219–232.
  • Landry N, Pillet S, Favre D, et al. Influenza virus-like particle vaccines made in Nicotiana benthamiana elicit durable, poly-functional and cross-reactive T cell responses to influenza HA antigens. Clin Immunol. 2014;154(2):164–177.
  • Cummings JF, Guerrero ML, Moon JE, et al. Safety and immunogenicity of a plant-produced recombinant monomer hemagglutinin-based influenza vaccine derived from influenza A (H1N1)pdm09 virus: a Phase 1 dose-escalation study in healthy adults. Vaccine. 2014;32(19):2251–2259.
  • Sandhu JS, Krasnyanski SF, Domier LL, et al. Oral immunization of mice with transgenic tomato fruit expressing respiratory syncytial virus-F protein induces a systemic immune response. Transgenic Res. 2000;9(2):127–135.
  • Smith CM, Fry SC, Gough KC, et al. Recombinant plants provide a new approach to the production of bacterial polysaccharide for vaccines. PLoS One. 2014;9(2):1–8.
  • Gorantala J, Grover S, Rahi A, et al. Generation of protective immune response against anthrax by oral immunization with protective antigen plant-based vaccine. J Biotechnol. 2014;176(1):1–10.
  • Pepponi I, Diogo GR, Stylianou E, et al. Plant-derived recombinant immune complexes as self-adjuvanting TB immunogens for mucosal boosting of BCG. Plant Biotechnol J. 2014;12(7):840–850.
  • Lakshmi PS, Verma D, Yang X, et al. Low cost tuberculosis vaccine antigens in capsules: expression in chloroplasts, bio-encapsulation, stability and functional evaluation in vitro. PLoS One. 2013;8(1):e54708.
  • Suzuki K, Kaminuma O, Yang L, et al. Prevention of allergic asthma by vaccination with transgenic rice seed expressing mite allergen: induction of allergen-specific oral tolerance without bystander suppression. Plant Biotechnol J. 2011;9(9):982–990.
  • Smart V, Foster PS, Rothenberg ME, et al. A plant-based allergy vaccine suppresses experimental asthma via an IFN-gamma and CD4+CD45RBlow T cell-dependent mechanism. J Immunol. 2003;171(4):2116–2126.
  • Rosales-Mendoza S, Ríos-Huerta R, Angulo C. An overview of tuberculosis plant-derived vaccines. Expert Rev Vaccines. 2015;14(6):877–889.
  • Márquez-Escobar VA, Rosales-Mendoza S, Beltrán-López JI, et al. Plant-based vaccines against respiratory diseases: current status and future prospects. Expert Rev Vaccines. 2016;16:1–13.
  • Govea-Alonso DO, Cardineau GA, Rosales-Mendoza S. Principles of plant-based vaccines. In: Rosales Mendoza S, editor. Genetically engineered plants as a source of vaccines against wide spread diseases -an integrated view. New York (NY): Springer Science+Business Media; 2014. p. 1–14.
  • Salazar-González JA, Rosales-Mendoza S, Bañuelos-Hernández B. Viral vector-based expression strategies. In: Rosales Mendoza S, editor. Genetically engineered plants as a source of vaccines against wide spread diseases -an integrated view. New York (NY): Springer Science+Business Media; 2014. p. 43–60.
  • Salazar-González JA, Monreal-Escalante E, Herrera Díaz A, et al. Plastid-based expression strategies. In: Rosales Mendoza S, editor. Genetically engineered plants as a source of vaccines against wide spread diseases -an integrated view. New York (NY): Springer Science+Business Media; 2014. p. 61–78.
  • D’Aoust MA, Lavoie PO, Couture MM, et al. Influenza virus-like particles produced by transient expression in Nicotiana benthamiana induce a protective immune response against a lethal viral challenge in mice. Plant Biotechnol J. 2008;6(9):930–940.
  • Shoji Y, Prokhnevsky A, Leffet B, et al. Immunogenicity of H1N1 influenza virus-like particles produced in Nicotiana benthamiana. Hum Vaccines Immunother. 2015;11(1):118–123.
  • Harakuni T, Sugawa H, Komesu A, et al. Heteropentameric cholera toxin B subunit chimeric molecules genetically fused to a vaccine antigen induce systemic and mucosal immune responses: a potential new strategy to target recombinant vaccine antigens to mucosal immune systems. Infect Immun. 2005;73(9):5654–5665.
  • da Hora VP, Conceição FR, Dellagostin OA, et al. Non-toxic derivatives of LT as potent adjuvants. Vaccine. 2011;29(8):1538–1544.
  • Matsuzaki Y, Takashita E, Okamoto M, et al. Evaluation of a new rapid antigen test using immunochromatography for detection of human metapneumovirus in comparison with real-time PCR assay. J Clin Microbiol. 2009;47(9):2981–2984.
  • World Health Organization. World health statistics database. 2008 [cited 2016 Oct 14]. Available from: http://www.who.int/whosis/whostat/EN_WHS08_Full.pdf?ua=1
  • World Health Organization. Vaccine safety basics. [cited 2016 Oct 14]. Available from: http://vaccine-safety-training.org/home.html
  • Gopal GJ, Kumar A. Strategies for the production of recombinant protein in Escherichia coli. Protein J. 2013;32(6):419–425.
  • Rosano GL, Ceccarelli EA. Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol. 2014;5:172.
  • Ahmad M, Hirz M, Pichler H, et al. Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous protein production. Appl Microbiol Biotechnol. 2014;98(12):5301–5317.
  • Porro D, Sauer M, Branduardi P, et al. Recombinant protein production in yeasts. Mol Biotechnol. 2005;31(3):245–259.
  • Hacker DL, Balasubramanian S. Recombinant protein production from stable mammalian cell lines and pools. Curr Opin Struct Biol. 2016;38:129–136.
  • Desai PN, Shrivastava N, Padh H. Production of heterologous proteins in plants: strategies for optimal expression. Biotechnol Adv. 2010;28(4):427–435.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.