898
Views
35
CrossRef citations to date
0
Altmetric
Review

An overview of adjuvants utilized in prophylactic vaccine formulation as immunomodulators

, , &
Pages 491-502 | Received 06 Jan 2017, Accepted 10 Mar 2017, Published online: 20 Mar 2017

References

  • O’Hagan DT. New generation vaccine adjuvants. Encyclopedia of Life Sciences. 1–7.
  • Mohan T, Verma P, Nageswara Rao D. Novel adjuvants & delivery vehicles for vaccines development: A road ahead. Ind J Med Res. 2013;138:779–795.
  • Petrovsky N, Cooper PD. Carbohydrate-based immune adjuvants. Expert Rev Vaccines. 2011;10(4):523–537.
  • Kreuter J. Nanoparticles as adjuvants for vaccines. Chapter: Vaccine Design, Pharmaceutical Biotechnology. 1995;6:463–472.
  • Chang M, Shi Y, Nail SL, et al. Degree of antigen adsorption in the vaccine or interstitial fluid and its effect on the antibody response in rabbits. Vaccine. 2001;19:2884–2889.
  • Tritto E, Mosca F, De Gregorio E. Mechanism of action of licensed vaccine adjuvants. Vaccine. 2009;27:3331–3334.
  • Vogel FR. Improving vaccine performance with adjuvants. Clin Infect Dis. 2000;30:S266–S270.
  • Coler RN, Bertholet S, Moutaftsi M, et al. Development and characterization of synthetic glucopyranosyl lipid adjuvant system as a vaccine adjuvant. Plos One. 2011;6:e16333.
  • Treuel L, Jiang X, Nienhaus GU. New views on cellular uptake and trafficking of manufactured nanoparticles. J Royal Soc Interface. 2013;10:20120939.
  • Manolova V, Flace A, Bauer M, et al. Nanoparticles target distinct dendritic cell populations according to their size. Eur J Immunol. 2008;38(5):1404–1413.
  • Wang W, Singh M. Selection of adjuvants for enhanced vaccine potency. World J Vaccine. 2011;1:33–78.
  • Petrovsky N, Aguilar JC. Vaccine adjuvants: current state and future trends. Immunol Cell Biol. 2004;82:488–496.
  • Song X, Hu S. Adjuvant activities of saponins from traditional Chinese medicinal herbs. Vaccine. 2009;27:4883–4890.
  • Sivakumar SM, Safhi MM, Kannadasan M, et al. Vaccine adjuvants – Current status and prospects on controlled release adjuvanticity. Saudi Pharm J. 2011;19:197–206.
  • Edelman R. Vaccine Adjuvants. Res Infect Dis. 1980;2:370–383.
  • Neutra MR, Pringault E, Kraehenbuhl JP. Antigen sampling across epithelial barriers and induction of mucosal immune responses. Annu Rev Immunol. 1996;14:275–300.
  • Lindblad EB. Aluminium compounds for use in vaccines. Immunol Cell Biol. 2004;82:497–505.
  • Byars NE, Allison AC. Immunologic adjuvants: general properties, advantages and limitations. laboratory methods in immunology. Boca Raton: CRC Press; 1990. p. 39–51.
  • Burrell LS, White JL, Hem SL. Stability of aluminium-containing adjuvants during aging at room temperature. Vaccine. 2000;18:2188–2192.
  • Wu JY, Gardner BH, Kushner NN, et al. Accessory cell requirements for saponin adjuvant–induced class I MHC antigen–restricted cytotoxic T lymphocytes. Cell Immunol. 1994;154:393–406.
  • Awate S, Babiuk LA, Mutwiri G. Mechanisms of action of adjuvants. Front Immunol. 2013;4:114.
  • Zhou F, Huang L. Liposome-mediated cytoplasmic delivery of proteins: an effective means of accessing the MHC class I–restricted antigen presentation pathway. Immuno-Methods. 1994;4:229–235.
  • Dupuis M, Murphy TJ, Higgins D, et al. Dendritic cells internalize vaccine adjuvant after intramuscular injection. Cell Immunol. 1998;186:18–27.
  • Newman MJ, Wu YJ, Gardner BH, et al. Saponin adjuvant induction of ovalbumin-specific CD81 cytotoxic T lymphocyte responses. J Immunol. 1992;148:2357–2362.
  • Takahashi H, Takashita T, Morein B, et al. Induction of CD81 cytotoxic cells by immunization with purified HIV1 envelope protein in ISCOMs. Nature. 1990;344:873–875.
  • Babu JS, Nair P, Kanda P, et al. Priming for virus-specific CD81 but notCD41 cytotoxic T lymphocytes with synthetic lipopeptide is influenced by acylation units and liposome encapsulation. Vaccine. 1995;13:1669–1676.
  • Powers DC, Manning MC, Hanscome PJ, et al. Cytotoxic T-lymphocyte responses to a liposome adjuvanted influenza A virus vaccine in the elderly. J Infect Dis. 1995;172:1103–1107.
  • White WI, Cassatt DR, Madsen J, et al. Antibody and cytotoxic T lymphocyte responses to a single liposome-associated peptide antigen. Vaccine. 1995;13:1111–1122.
  • Audibert FM, Lise LD. Adjuvants: current status, clinical perspectives and future prospects. Immunol Today. 1993;14:281–284.
  • Grun JL, Maurer PH. Different T helper cell subsets elicited in mice utilizing two different adjuvant vehicles: the role of endogenous interleukin 1 in proliferative responses. Cell Immunol. 1989;121:134–145.
  • Xu-Amano J, Kiyono H, Jackson RJ, et al. Helper T cell subsets for immunoglobulin A responses: oral immunization with tetanus toxoid and cholera toxin as adjuvant selectively induces Th2 cells in mucosa associated tissues. J Exp Med. 1993;178:1309–1320.
  • Allison AC. The mode of action of immunological adjuvants. Dev Biol Stand. 1998;92:3–11.
  • Unkeless JC, Scigliano E, Freedman VH. Structure and function of human and murine receptors for IgG. Annu Rev Immunol. 1988;6:251–281.
  • Phillips NC, Emili A. Enhanced antibody responses to liposome-associated protein antigens: preferential stimulation of IgG2a/b production. Vaccine. 1992;10:151–158.
  • Moore A, McCarthy L, Mills KH. The adjuvant combination monophosphoryl lipid A and QS21 switches T cell responses induced with a soluble recombinant HIV protein from Th2 to Th1. Vaccine. 1999;17:2517–2527.
  • Jankovic D, Caspar P, Zweig M, et al. Adsorption to aluminum hydroxide promotes the activity of IL-12 as an adjuvant for antibody as well as type 1 cytokine responses to HIV-1 gp120. J Immunol. 1997;159:2409–2417.
  • Wilson AD, Robinson A, Irons L, et al. Adjuvant action of cholera toxin and pertussis toxin in the induction of IgA antibody response to orally administered antigen. Vaccine. 1993;11:113–118.
  • Lindsay DS, Parton R, Wardlaw AC. Adjuvant effect of pertussis toxin on the production of anti-ovalbumin IgE in mice and lack of direct correlation between PCA and ELISA. Int Arch Allergy Immunol. 1994;105:281–288.
  • Coffman RL, Sher A, Seder RA. Vaccine adjuvants: putting Innate immunity to work. Immunity. 2010;33(4):492–503.
  • Alpar HO, Bowen JC, Brown MRW. Effectiveness of liposomes as adjuvants of orally and nasally administered tetanus toxoid. Int J Pharm. 1992;88:335–344.
  • Walker RI. New strategies for using mucosal vaccination to achieve more effective immunization. Vaccine. 1994;12:387–400.
  • Allison AC, Byars NE. Immunological adjuvants: desirable properties and side-effects. Mol Immunol. 1991;28:279–284.
  • Waters RV, Terrell TG, Jones GH. Uveitis induction in the rabbit by muramyl dipeptides. Infect Immun. 1986;51:816–825.
  • Goldenthal KL, Cavagnaro JA, Alving CR, et al. Safety evaluation of vaccine adjuvants. national cooperative vaccine development working group. AIDS Res Hum Retroviruses. 1993;9:S45–9.
  • Petrovsky N. Freeing vaccine adjuvants from dangerous immunological dogma. Expert Rev Vaccines. 2008;7(1):7–10.
  • Butler NR, Voyce MA, Burland WL, et al. Advantages of aluminium hydroxide adsorbed combined diphtheria, tetanus, and pertussis vaccines for the immunization of infants. Br Med J. 1969;1(645):663–666.
  • Cherin P, Gherardi RK. Emergence of a new entity, the macrophagic myofasciitis. GERMMAD study group of the french association against myopathies study and research group on acquired dysimmunity-related muscle disease. Rev Rhum Engl Ed. 1998;65(10):541–542.
  • Aghazadeh-Habashi A, Kohan MH, Asghar W, et al. Glucosamine dose/concentration-effect correlation in the rat with adjuvant arthritis. J Pharmac Sci. 2014;103(2):760–767.
  • Petrovsky N. Comparative safety of vaccine adjuvants: a summary of current evidence and future needs. Drug Saf. 2015;38(11):1059–1074.
  • Aiyer Harini P, Ashok Kumar HG, Praveen Kumar G, et al. An overview of immunologic adjuvants - a review. J Vaccines Vaccin. 2013;4:167.
  • Walls RS. Eosinophil response to alum adjuvants. involvement of T cells in non-antigen-dependent mechanisms. Proc Soc Exp Biol Medical. 1977;156:431–435.
  • Relyveld EH, Hencoq E, Raynaud M. Etude de la vaccination antidiphterique de sujets alergiques avec une anatoxine pure adsorbee sur phosphate de calcium. Bull WHO. 1964;30:321–325.
  • Gupta RK, Siber GR. Adjuvants for human vaccines-current status, problems and future prospects. Vaccine. 1995;13:1263–1276.
  • Relyveld EH. Preparation and use of calcium phosphate adsorbed vaccines. Dev Biol Stand. 1986;65:131–136.
  • Jackson LR, Fox JG. Institutional policies and guidelines on adjuvants and antibody production. Ilar J. 1995;37:141–150.
  • Bomford R. The comparative selectivity of adjuvants for humoral and cell-mediated immunity. II. effect on delayed-type hypersensitivity in the mouse and guinea pig, and cell-mediated immunity to tumour antigens in the mouse of Freund’s incomplete and complete adjuvants, alhydrogel, corynebacterium parvum, Bordetella pertussis, muramyl dipeptide and saponin. Clin Exp Immunol. 1980;39:435–441.
  • Orozco-Morales M, Sánchez-García FJ, Guevara-Salazar P, et al. Adjuvant immunotherapy of C6 glioma in rats with pertussis toxin. J Cancer Res Clin Oncol. 2012;138:23–33.
  • Ghose C, Kalsy A, Sheikh A, et al. Transcutaneous immunization with Clostridium difficile toxoid A induces systemic and mucosal immune responses and toxin A-neutralizing antibodies in mice. Infect Immun. 2007;75:2826–2832.
  • Katre NV. Liposome-based depot injection technologies; how versatile are they? Am J Drug Deliv. 2004;2:213–227.
  • Fossum C, Bergström M, Lövgren K, et al. Effect of ISCOMs and their adjuvant moiety (matrix) on the initial proliferation and IL-2 responses: comparison of spleen cells from mice inoculated with iscoms and/or matrix. Cell Immunol. 1990;129:414–425.
  • Mukherjee C, Mäkinen K, Savolainen J, et al. Chemistry and biology of oligo valent β-(1→2)-linked oligomannosides: new insights into carbohydrate-based adjuvants in immunotherapy. Chemistry. 2013;19:7961–7974.
  • Yang D, Biragyn A, Hoover DM, et al. Multiple roles of antimicrobial defensins, cathelicidins, and eosinophil-derived neurotoxin in host defense. Annu Rev Immunol. 2004;22:181–215.
  • Yang D, Biragyn A, Kwak LW, et al. Mammalian defensins in immunity: more than just microbicidal. Trends Immunol. 2002;23:291–296.
  • Mohan T, Mitra D, Rao DN. Nasal delivery of PLG micro particle encapsulated defensin peptides adjuvanted gp41 antigen confers strong and long-lasting immunoprotective response against HIV-1. Immunol Res. 2014;58(1):139–153.
  • LeBon A, Schiavoni G, D’Agostino G, et al. Type-I interferons potently enhance humoral immunity and can promote isotype switching by stimulating dendritic cells in-vivo. Immunity. 2001;14:461–470.
  • Staats HF, Ennis FA, Jr IL-1. is an effective adjuvant for mucosal and systemic immune responses when co-administered with protein immunogens. J Immunol. 1999;162:6141–6147.
  • Huffnagle GB, Strieter RM, McNeil LK, et al. Macrophage inflammatory protein-1α (MIP-1α) is required for the efferent phase of pulmonary cell-mediated immunity to a Cryptococcus neoformans infection. J Immunol. 1997;159:318–327.
  • Eberl M, Beck E, Coulson PS, et al. IL-18 potentiates the adjuvant properties of IL-12 in the induction of a strong Th1 type immune response against a recombinant antigen. Vaccine. 2000;18:2002–2008.
  • Bobanga ID, Petrosiute A, Huang AY. Chemokines as cancer vaccine adjuvants. Vaccines. 2013;1(4):444–462.
  • Sominskaya I, Skrastina D, Dislers A, et al. Construction and immunological evaluation of multivalent hepatitis B virus (HBV) core virus-like particles carrying HBV and HCV epitopes. Clin Vaccine Immunol. 2010;17:1027–1033.
  • Thomas C, Rawat A, Hope-Weeks L, et al. Aerosolized PLGA nanoparticles enhance humoral, mucosal and cytokine responses to hepatitis B vaccine. Mol Pharm. 2011;8:405–415.
  • Kim SY, Doh HJ, Jang MH, et al. Oral immunization with Helicobacter pylori-loaded poly (d, l-lactide-co-glycolide) nanoparticles. Helicobacter. 1999;4:33–39.
  • Vila A, Sanchez A, Evora C, et al. PEG-PLA nanoparticles as carriers for nasal vaccine delivery. J Aerosol Med. 2004;17:174–185.
  • Lü J-M, Wang X, Marin-Muller C, et al. Current advances in research and clinical applications of PLGA-based nanotechnology. Expert Rev Mol Diagn. 2009;9:325–341.
  • Demento SL, Cui W, Criscione JM, et al. Role of sustained antigen release from nanoparticle vaccines in shaping the T cell memory phenotype. Biomaterials. 2012;33:4957–4964.
  • Diwan M, Tafaghodi M, Samuel J. Enhancement of immune responses by co-delivery of a CpG oligodeoxynucleotide and tetanus toxoid in biodegradable nanospheres. J Control Release. 2002;85:247–262.
  • Silva AL, Rosalia RA, Sazak A, et al. Optimization of encapsulation of a synthetic long peptide in PLGA nanoparticles: low-burst release is crucial for efficient CD8 (+) T cell activation. Eur J Pharmaceutics Biopharmaceutics. 2013;83:338–345.
  • Akagi T, Baba M, Akashi M, et al. 2012. Biodegradable nanoparticles as vaccine adjuvants and delivery systems: regulation of immune responses by nanoparticle-based vaccine. S. Kunugi, T. Yamaoka (Eds.), Polymers in nanomedicine, Berlin: Springer-Verlag Berlin, pp. 31–64.
  • Akagi T, Kaneko T, Kida T, et al. Preparation and characterization of biodegradable nanoparticles based on poly (γ-glutamic acid) with l-phenylalanine as a protein carrier. J Control Release. 2005;108:226–236.
  • Kalkanidis M, Pietersz GA, Xiang SD, et al. Methods for nano-particle based vaccine formulation and evaluation of their immunogenicity. Methods. 2006;40:20–29.
  • Sjolander S, Drave D, Davis R, et al. Intranasal immunisation with influenza- ISCOMATRIX adjuvanted influenza vaccine. Vaccine. 2003;21:946–949.
  • Rimmelzwann GF, Baars M, VanAmerongen G, et al. A single dose of an ISCOM influenza vaccine induces long- lasting protective immunity against homologous challenge infection but fails to protect cynomologus macaques against distant drift variants of influenza A (H3N2) viruses. Vaccine. 2001;20:158–163.
  • Freund J. The mode of action of immunologic adjuvants. Adv Tuberc Res. 1956;7:130–148.
  • Dar P, Kalaivanan R, Sied N, et al. Montanide ISA™ 201 adjuvanted FMD vaccine induces improved immune responses and protection in cattle. Vaccine. 2013;31:3327–3332.
  • Seubert A, Monaci E, Pizza M, et al. The adjuvants aluminium hydroxide and MF59 induce monocyte and granulocyte chemo attractants and enhance monocyte differentiation toward dendritic cells. J Immunol. 2008;180:5402–5412.
  • Didierlaurent AM, Laupèze B, Di Pasquale A, et al. Adjuvant system AS01: helping to overcome the challenges of modern vaccines. Expert Rev Vaccines. 2017;16(1):55–63.
  • Leroux-Roels I, Devaster JM, Leroux-Roels G, et al. Adjuvant system AS02V enhances humoral and cellular immune responses to pneumococcal protein PhtD vaccine in healthy young and older adults: randomised, controlled trials. Vaccine. 2015;33(4):577–584.
  • Garçon N, Vaughn DW, Didierlaurent AM. Development and evaluation of AS03, an adjuvant system containing α-tocopherol and squalene in an oil-in-water emulsion. Expert Rev Vaccines. 2012;11(3):349–366.
  • Didierlaurent AM, Morel S, Lockman L, et al. AS04, an aluminum salt- and TLR4 agonist-based adjuvant system, induces a transient localized innate immune response leading to enhanced adaptive immunity. J Immunol. 2009;183(10):6186–6197.
  • Schmidt ST, Foged C, Korsholm KS, et al. Liposome-based adjuvants for subunit vaccines: formulation strategies for subunit antigens and immunostimulators. Pharmaceutics. 2016;8:7.
  • Zhu D, Tuo W. QS-21: A potent vaccine adjuvant. Nat Prod Chem Res. 2016;3(4):e113.
  • Eng NF, Bhardwaj N, Mulligan R, et al. The potential of 1018 ISS adjuvant in hepatitis B vaccines: HEPLISAV™ review. Hum Vaccin Immunother. 2013;9(8):1661–1672.
  • Olafsdottir TA, Lingnau K, Nagy E, et al. IC31, a two-component novel adjuvant mixed with a conjugate vaccine enhances protective immunity against pneumococcal disease in neonatal mice. Scand J Immunol. 2009;69(3):194–202.
  • Szabo A, Gogolak P, Pazmandi K, et al. The two-component adjuvant IC31® boosts type i interferon production of human monocyte-derived dendritic cells via ligation of endosomal TLRs. Plos One. 2013;8(2):e55264.
  • van Dissel JT, Joosten SA, Hoff ST, et al. A novel liposomal adjuvant system, CAF01, promotes long-lived mycobacterium tuberculosis-specific T-cell responses in human. Vaccine. 2014;32(52):7098–7107.
  • Norton EB, Bauer DL, Weldon WC, et al. The novel adjuvant dmLT promotes dose sparing, mucosal immunity and longevity of antibody responses to the inactivated polio vaccine in a murine model. Vaccine. 2015;33(16):1909–1915.
  • Morelli AB, Becher D, Koernig S, et al. ISCOMATRIX: a novel adjuvant for use in prophylactic and therapeutic vaccines against infectious diseases. J Med Microbiol. 2012;6:935–943.
  • Reimer JM, Karlsson KH, Lövgren-Bengtsson K, et al. Matrix-M™ adjuvant induces local recruitment, activation and maturation of central immune cells in absence of antigen. Plos One. 2012;7(7):e41451.
  • Jain S, O’Hagan DT, Singh M. The long-term potential of biodegradable poly(lactide-co-glycolide) microparticles as the next-generation vaccine adjuvant. Expert Rev Vaccines. 2011;10(12):1731–1742.
  • Shim DH, Ko HJ, Volker G, et al. Efficacy of poly [di(sodium carboxylatophenoxy)phosphazene] (PCPP) as mucosal adjuvant to induce protective immunity against respiratory pathogens. Vaccine. 2010;28(11):2311–2317.
  • Bode C, Zhao G, Steinhagen F, et al. CpG DNA as a vaccine adjuvant. Expert Rev Vaccines. 2011;10(4):499–511.
  • Behzad H, Huckriede AL, Haynes L, et al. GLA-SE, a synthetic toll-like receptor 4 agonist, enhances T-cell responses to influenza vaccine in older adults. J Infect Dis. 2012;205(3):466.
  • Lindblad EB. Aluminium Adjuvants. In: Stewart-Tull DES, ed. The theory and practical application of adjuvants. Chichester: John Wiley & Sons Ltd; 1995. p. 21–35.
  • Schirmbeck R, Melber K, Mertens T, et al. Antibody and cytotoxic T-cell responses to soluble hepatitis B virus (HBV) S antigen in mice: implications for the pathogenesis of HBV-induced hepatitis. J Virol. 1994;68:1418–1425.
  • Traquina P, Morandi M, Contorni M, et al. MF59 adjuvant enhances the antibody response to recombinant hepatitis B surface antigen vaccine in primates. J Infect Dis. 1996;174:1168–1175.
  • Blagowechensky NN. Durée du séjour de l’antigène dans l’organisme et immunité. Rev Immunol París. 1938;4:161.
  • Gupta RK, Rost BE, Relyveld E, et al. Adjuvant properties of aluminium and calcium compounds. In: Powell MF, Newman MJ eds. Vaccine design: the subunit and adjuvant approach. New York: Plenum Press; 1995. p. 229–248.
  • Straw BE, MacLachlan NJ, Corbett WT, et al. Comparison of tissue reactions produced by Haemophilus pleuropneumoniae vaccines made with six different adjuvants in swine. Can J Comp Med. 1985;49:149.
  • Frey S, Poland G, Percell S, et al. Comparison of the safety, tolerability, and immunogenicity of a MF59-adjuvanted influenza vaccine and a non-adjuvanted influenza vaccine in non-elderly adults. Vaccine. 2003;21:4234–4237.
  • Lee JB, Jang JE, Song MK, et al. Intranasal delivery of cholera toxin induces Th17- dominated T-cell response to bystander antigens. Plos One. 2009;4:e5190.
  • Gupta P, Singh MK, Singh Y, et al. Recombinant Shiga toxin B subunit elicits protection against Shiga toxin via mixed Th type immune response in mice. Vaccine None. 2011;29:8094–8100.
  • Lowell GH, Kaminski RW, Grate S, et al. Intranasal and intramuscular proteosome-staphylococcal enterotoxin B (SEB) toxoid vaccines: immunogenicity and efficacy against lethal SEB intoxication in mice. Infect Immun. 1996;64:1706–1713.
  • Qiu HN, Wong CK, Chu IM, et al. Muramyl dipeptide mediated activation of human bronchial epithelial cells interacting with basophils: a novel mechanism of airway inflammation. Clin Exp Immunol. 2013;172:81–94.
  • Bessler WG, Baier W, Esche U, et al. Bacterial lipopeptides constitute efficient novel immunogens and adjuvants in parenteral and oral immunization. Behring Inst Mitt. 1997;98:390–399.
  • Burt D, Mallett C, Plante M, et al. Proteasome-adjuvanted intranasal influenza vaccines: advantages, progress and future considerations. Expert Rev Vaccines None. 2011;10:365–375.
  • Tomai MA, Johnson AG. T cell and interferon-g involvement in the adjuvant action of a detoxified endotoxin. J Biol Resp Modifiers. 1989;8:625–630.
  • Ronnberg B, Fekadu M, Morien B. Adjuvant activity of non-toxic Quillaja saponaria Molina components for use in ISCOM matrix. Vaccine. 1995;13:1375–1382.
  • Nambiar JK, Ryan AA, Kong CU, et al. Modulation of pulmonary DC function by vaccine encoded GM-CSF enhances protective immunity against mycobacterium tuberculosis infection. Eur J Immunol. 2010;40:153–161.
  • Abraham E, Shah S. Intranasal immunization with liposomes containing IL-2 enhances bacterial polysaccharide antigen-specific pulmonary secretory antibody response. J Immunol. 1992;49:3719–3726.
  • Kishimoto T. Interleukin-6: discovery of a pleiotropic cytokine. Arth Res Ther. 2006;8(Suppl 2):S2.
  • Shanmugham LN, Petrarca C, Frydas S, et al. IL-15 an immunoregulatory and anti-cancer cytokine: recent advances. J Exp Clin Can Res. 2006;25:529–536.
  • Seth A, Ritchie FK, Wibowo N, et al. Non-carrier nanoparticles adjuvant modular protein vaccine in a particle-dependent manner. Plos One. 2015;10(3):e0117203.
  • Minigo G, Scholzen A, Tang CK, et al. Poly-l-lysine-coated nanoparticles: a potent delivery system to enhance DNA vaccine efficacy. Vaccine. 2007;25:1316–1327.
  • Peek LJ, Middaugh CR, Berkland C. Nanotechnology in vaccine delivery. Adv Drug Deliv Rev. 2008;60:915–928.
  • Danhier F, Ansorena E, Silva JM, et al. PLGA-based nanoparticles: an overview of biomedical applications. J Control Release. 2012;161:505–522.
  • Manish M, Rahi A, Kaur M, et al. A single-dose PLGA encapsulated protective antigen domain 4 nanoformulation protects mice against Bacillus anthracis spore challenge. Plos ONE. 2013;8:e61885–e61890.
  • Moon JJ, Suh H, Polhemus ME, et al. Antigen-displaying lipid-enveloped PLGA nanoparticles as delivery agents for a plasmodium vivax malaria vaccine. Plos ONE. 2012;7:e31472.
  • Xiang SD, Scholzen A, Minigo G, et al. Pathogen recognition and development of particulate vaccines: does size matter? Methods. 2006 Sep;40(1):1–9.
  • Scheerlinck J-PY, Gloster S, Gamvrellis A, et al. Systemic immune responses in sheep, induced by a novel nano-bead adjuvant. Vaccine. 2006;24:1124–1131.
  • Démoulins T, Bassi I, Thomann-Harwood L, et al. Alginate-coated chitosan nanogel capacity to modulate the effect of TLR ligands on blood dendritic cells. Nanomedicine: Nanotechnology, Biol Med. 2013;9:806–817.
  • Vinogradov S, Batrakova E, Kabanov A. Poly (ethylene glycol)-polyethylene imine NanoGel™ particles: novel drug delivery systems for antisense oligonucleotides. Colloids and Surfaces B: Biointerfaces. 1999;16:291–304.
  • Ferreira SA, Gama FM, Vilanova M. Polymeric nanogels as vaccine delivery systems. Nanomedicine: Nanotechnology, Biol Med. 2012;9:159–173.
  • Raemdonck K, Demeester J, De Smedt S. Advanced nanogel engineering for drug delivery. Soft Matter. 2009;5:707–715.
  • Nochi T, Yuki Y, Takahashi H, et al. Nanogel antigenic protein-delivery system for adjuvant-free intranasal vaccines. Nat Mater. 2010;9:572–578.
  • Debache K, Kropf C, Schutz CA, et al. Vaccination of mice with chitosan nanogel-associated recombinant NcPDI against challenge infection with Neospora caninum tachyzoites. Parasite Immunol. 2011;33:81–94.
  • Stone JW, Thornburg NJ, Blum DL, et al. Gold nanorod vaccine for respiratory syncytial virus. Nanotechnology. 2013;24:295102.
  • Tao W, Ziemer KS, Gill HS. Gold nanoparticle-M2e conjugate co-formulated with CpG induces protective immunity against influenza A virus. Nanomedicine. 2014;9(2):237–251.
  • Xu L, Liu Y, Chen Z, et al. Surface-engineered gold nanorods: promising DNA vaccine adjuvant for HIV-1 treatment. Nano Lett. 2012;12:2003–2012.
  • Chen Y-S, Hung Y-C, Lin W-H, et al. Assessment of gold nanoparticles as a size-dependent vaccine carrier for enhancing the antibody response against synthetic foot-and-mouth disease virus peptide. Nanotechnology. 2010;21:195101–195108.
  • Bianco A, Kostarelos K, Prato M. Applications of carbon nanotubes in drug delivery. Curr Opin Chem Biol. 2005;9:674–679.
  • Wang T, Zou M, Jiang H, et al. Synthesis of a novel kind of carbon nanoparticle with large mesopores and macropores and its application as an oral vaccine adjuvant. Eur J Pharm Sci. 2011;44:653–659.
  • Smart S, Cassady A, Lu G, et al. The biocompatibility of carbon nanotubes. Carbon. 2006;44:1034–1047.
  • Villa CH, Dao T, Ahearn I, et al. Single-walled carbon nanotubes deliver peptide antigen into dendritic cells and enhance IgG responses to tumor-associated antigens. ACS Nano. 2011;5:5300–5311.
  • Parra J, Abad-Somovilla A, Mercader JV, et al. Carbon nanotube-protein carriers enhance size-dependent self-adjuvant antibody response to haptens. J Control Release. 2013;170:242–251.
  • Pantarotto D, Partidos CD, Hoebeke J, et al. Immunization with peptide-functionalized carbon nanotubes enhances virus-specific neutralizing antibody responses. Chem Biol. 2003;10:961–966.
  • Ow H, Larson DR, Srivastava M, et al. Bright and stable core-shell fluorescent silica nanoparticles. Nano Lett. 2005;5:113–117.
  • Benezra M, Penate-Medina O, Zanzonico PB, et al. Multimodal silica nanoparticles are effective cancer-targeted probes in a model of human melanoma. J Clin Investig. 2011;121:2768–2780.
  • Niu Y, Popat A, Yu M, et al. Recent advances in the rational design of silica-based nanoparticles for gene therapy. Ther Deliv. 2012;3:1217–1237.
  • Yu M, Jambhrunkar S, Thorn P, et al. Hyaluronic acid modified mesoporous silica nanoparticles for targeted drug delivery to CD44-overexpressing cancer cells. Nanoscale. 2013;5:178–183.
  • Alshamsan A, Haddadi A, Incani V, et al. Formulation and delivery of siRNA by oleic acid and stearic acid modified polyethylene imine. Mol Pharm. 2008;6:121–133.
  • Xia T, Kovochich M, Liong M, et al. Polyethylene imine coating enhances the cellular uptake of mesoporous silica nanoparticles and allows safe delivery of siRNA and DNA constructs. ACS Nano. 2009;3:3273–3286.
  • He -X-X, Wang K, Tan W, et al. Bio-conjugated nanoparticles for DNA protection from cleavage. J Am Chem Soc. 2003;125:7168–7169.
  • Zhai W, He C, Wu L, et al. Degradation of hollow mesoporous silica nanoparticles in human umbilical vein endothelial cells. J Biomed Mater Res B: Appl Biomater. 2012;100B:1397–1403.
  • Yamada H, Urata C, Aoyama Y, et al. Preparation of colloidal mesoporous silica nanoparticles with different diameters and their unique degradation behavior in static aqueous systems. Chem Mater. 2012;24:1462–1471.
  • Chen K, Zhang J, Gu H. Dissolution from inside: unique degradation behaviour of core-shell magnetic mesoporous silica nanoparticles and the effect of polyethylene imine coating. J Mater Chem. 2012;22:22005–22012.
  • Nakanishi T, Kunisawa J, Hayashi A, et al. Positively charged liposomes function as an efficient immunoadjuvant in inducing cell-mediated immune response to soluble proteins. J Control Release. 1999;61:233–240.
  • Campbell JD. Development of the CpG adjuvant 1018: a case study. Methods Mol Biol. 2017;1494:15–27.
  • Romio S, Weibel D, Dieleman JP, et al. Guillain-Barré syndrome and adjuvanted pandemic influenza A (H1N1) 2009 vaccines: a multinational self-Controlled case series in Europe. Plos One. 2014;9(1):e82222.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.