383
Views
15
CrossRef citations to date
0
Altmetric
Review

Pre-clinical and clinical development of the first placental malaria vaccine

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 613-624 | Received 28 Oct 2016, Accepted 20 Apr 2017, Published online: 28 Apr 2017

References

  • Noor AM, Kinyoki DK, Mundia CW, et al. The changing risk of Plasmodium falciparum malaria infection in Africa: 2000-10: a spatial and temporal analysis of transmission intensity. Lancet. 2014;383:1739–1747.
  • WHO. World malaria report 2014. Geneva: World Health Organization; 2014. Available from: http://www.who.int/malaria/publications/world_malaria_report_2014/en/
  • David PH, Hommel M, Miller LH, et al. Parasite sequestration in Plasmodium falciparum malaria: spleen and antibody modulation of cytoadherence of infected erythrocytes. Proc Natl Acad Sci U S A. 1983;80:5075–5079.
  • Langreth SG, Peterson E. Pathogenicity, stability, and immunogenicity of a knobless clone of Plasmodium falciparum in Colombian owl monkeys. Infect Immun. 1985;47:760–766.
  • Su XZ, Heatwole VM, Wertheimer SP, et al. The large diverse gene family var encodes proteins involved in cytoadherence and antigenic variation of Plasmodium falciparum-infected erythrocytes. Cell. 1995;82:89–100.
  • Baruch DI, Pasloske BL, Singh HB, et al. Cloning the P. falciparum gene encoding PfEMP1, a malarial variant antigen and adherence receptor on the surface of parasitized human erythrocytes. Cell. 1995;82:77–87.
  • Gardner MJ, Hall N, Fung E, et al. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature. 2002;419:498–511.
  • Chen Q, Fernandez V, Sundstrom A, et al. Developmental selection of var gene expression in Plasmodium falciparum. Nature. 1998;394:392–395.
  • Scherf A, Hernandez-Rivas R, Buffet P, et al. Antigenic variation in malaria: in situ switching, relaxed and mutually exclusive transcription of var genes during intra-erythrocytic development in Plasmodium falciparum. Embo J. 1998;17:5418–5426.
  • Dzikowski R, Frank M, Deitsch K. Mutually exclusive expression of virulence genes by malaria parasites is regulated independently of antigen production. Plos Pathog. 2006;2:e22.
  • Smith JD, Chitnis CE, Craig AG, et al. Switches in expression of Plasmodium falciparum var genes correlate with changes in antigenic and cytoadherent phenotypes of infected erythrocytes. Cell. 1995;82:101–110.
  • Bull PC, Lowe BS, Kortok M, et al. Parasite antigens on the infected red cell surface are targets for naturally acquired immunity to malaria. Nat Med. 1998;4:358–360.
  • Jensen AT, Magistrado P, Sharp S, et al. Plasmodium falciparum associated with severe childhood malaria preferentially expresses PfEMP1 encoded by group A var genes. J Exp Med. 2004;199:1179–1190. Epub 2004 May 5.
  • Cham GK, Turner L, Lusingu J, et al. Sequential, ordered acquisition of antibodies to Plasmodium falciparum erythrocyte membrane protein 1 domains. J Immunology. 2009;183:3356–3363. Epub 2009 Aug 14.
  • Lavstsen T, Turner L, Saguti F, et al. Plasmodium falciparum erythrocyte membrane protein 1 domain cassettes 8 and 13 are associated with severe malaria in children. Proc Natl Acad Sci U S A. 2012;109:E1791–E800. Epub 2012 May 24.
  • Bernabeu M, Danziger SA, Avril M, et al. Severe adult malaria is associated with specific PfEMP1 adhesion types and high parasite biomass. Proc Natl Acad Sci U S A. 2016;113:E3270–E3279.
  • Dellicour S, Tatem AJ, Guerra CA, et al. Quantifying the number of pregnancies at risk of malaria in 2007: a demographic study. Plos Med. 2010;7:e1000221. Epub 2010 Feb 4.
  • Huynh BT, Fievet N, Gbaguidi G, et al. Malaria associated symptoms in pregnant women followed-up in Benin. Malar J. 2011;10:72.
  • Desai M, Ter Kuile FO, Nosten F, et al. Epidemiology and burden of malaria in pregnancy. Lancet Infect Dis. 2007;7:93–104. Epub 2007 Jan 26.
  • Walker PG, Ter Kuile FO, Garske T, et al. Estimated risk of placental infection and low birthweight attributable to Plasmodium falciparum malaria in Africa in 2010: a modelling study. Lancet Glob Health. 2014;2:e460–e467.
  • Walter PR, Garin Y, Blot P. Placental pathologic changes in malaria. A histologic and ultrastructural study. Am J Pathol. 1982;109:330–342. Epub 1982 Dec 1.
  • Galbraith RM, Fox H, Hsi B, et al. The human materno-foetal relationship in malaria. II. Histological, ultrastructural and immunopathological studies of the placenta. Trans R Soc Trop Med Hyg. 1980;74:61–72.
  • Muthusamy A, Achur RN, Bhavanandan VP, et al. Plasmodium falciparum-infected erythrocytes adhere both in the intervillous space and on the villous surface of human placenta by binding to the low-sulfated chondroitin sulfate proteoglycan receptor. Am J Pathol. 2004;164:2013–2025.
  • Ismail MR, Ordi J, Menendez C, et al. Placental pathology in malaria: a histological, immunohistochemical, and quantitative study. Hum Pathol. 2000;31:85–93. Epub 2000 Feb 9.
  • Rogerson SJ, Pollina E, Getachew A, et al. Placental monocyte infiltrates in response to Plasmodium falciparum malaria infection and their association with adverse pregnancy outcomes. Am J Trop Med Hyg. 2003;68:115–119. Epub 2003 Jan 31.
  • Ordi J, Ismail MR, Ventura PJ, et al. Massive chronic intervillositis of the placenta associated with malaria infection. Am J Surg Pathol. 1998;22:1006–1011. Epub 1998 Aug 26.
  • Yamada M, Steketee R, Abramowsky C, et al. Plasmodium falciparum associated placental pathology: a light and electron microscopic and immunohistologic study. Am J Trop Med Hyg. 1989;41:161–168.
  • Crocker IP, Tanner OM, Myers JE, et al. Syncytiotrophoblast degradation and the pathophysiology of the malaria-infected placenta. Placenta. 2004;25:273–282.
  • Fried M, Duffy PE. Adherence of Plasmodium falciparum to chondroitin sulfate A in the human placenta. Science. 1996;272:1502–1504. Epub 1996 Jun 7.
  • Fried M, Nosten F, Brockman A, et al. Maternal antibodies block malaria. Nature. 1998;395:851–852.
  • O’Neil-Dunne I, Achur RN, Agbor-Enoh ST, et al. Gravidity-dependent production of antibodies that inhibit binding of Plasmodium falciparum-infected erythrocytes to placental chondroitin sulfate proteoglycan during pregnancy. Infect Immun. 2001;69:7487–7492.
  • Ricke CH, Staalsoe T, Koram K, et al. Plasma antibodies from malaria-exposed pregnant women recognize variant surface antigens on Plasmodium falciparum-infected erythrocytes in a parity-dependent manner and block parasite adhesion to chondroitin sulfate A. J Immunology. 2000;165:3309–3316. Epub 2000 Sep 7.
  • Staalsoe T, Megnekou R, Fievet N, et al. Acquisition and decay of antibodies to pregnancy-associated variant antigens on the surface of Plasmodium falciparum-infected erythrocytes that protect against placental parasitemia. J Infect Dis. 2001;184:618–626.
  • Duffy PE, Fried M. Antibodies that inhibit Plasmodium falciparum adhesion to chondroitin sulfate A are associated with increased birth weight and the gestational age of newborns. Infect Immun. 2003;71:6620–6623.
  • Taylor DW, Zhou A, Marsillio LE, et al. Antibodies that inhibit binding of Plasmodium falciparum-infected erythrocytes to chondroitin sulfate A and to the C terminus of merozoite surface protein 1 correlate with reduced placental malaria in Cameroonian women. Infect Immun. 2004;72:1603–1607.
  • Staalsoe T, Shulman CE, Bulmer JN, et al. Variant surface antigen-specific IgG and protection against clinical consequences of pregnancy-associated Plasmodium falciparum malaria. Lancet. 2004;363:283–289.
  • Salanti A, Staalsoe T, Lavstsen T, et al. Selective upregulation of a single distinctly structured var gene in chondroitin sulphate A-adhering Plasmodium falciparum involved in pregnancy-associated malaria. Mol Microbiol. 2003;49:179–191. Epub 2003 Jun 26.
  • Magistrado P, Salanti A, Tuikue Ndam NG, et al. VAR2CSA expression on the surface of placenta-derived Plasmodium falciparum-infected erythrocytes. J Infect Dis. 2008;198:1071–1074. Epub 2008 Aug 15.
  • Salanti A, Dahlback M, Turner L, et al. Evidence for the involvement of VAR2CSA in pregnancy-associated malaria. J Exp Med. 2004;200:1197–1203. Epub 2004 Nov 3.
  • Tuikue Ndam NG, Salanti A, Bertin G, et al. High level of var2csa transcription by Plasmodium falciparum isolated from the placenta. J Infect Dis. 2005;192:331–335. Epub 2005 Jun 18.
  • Viebig NK, Gamain B, Scheidig C, et al. A single member of the Plasmodium falciparum var multigene family determines cytoadhesion to the placental receptor chondroitin sulphate A. EMBO Rep. 2005;6:775–781. Epub 2005 Jul 19.
  • Duffy MF, Maier AG, Byrne TJ, et al. VAR2CSA is the principal ligand for chondroitin sulfate A in two allogeneic isolates of Plasmodium falciparum. Mol Biochem Parasitol. 2006;148:117–124.
  • Doritchamou J, Bertin G, Moussiliou A, et al. First-trimester Plasmodium falciparum infections display a typical “placental” phenotype. J Infect Dis. 2012;206:1911–1919.
  • Fried M, Duffy PE. Designing a VAR2CSA-based vaccine to prevent placental malaria. Vaccine. 2015;33:7483–7488.
  • Gnidehou S, Doritchamou J, Arango EM, et al. Functional antibodies against VAR2CSA in nonpregnant populations from colombia exposed to Plasmodium falciparum and Plasmodium vivax. Infect Immun. 2014;82:2565–2573.
  • Yamada S, Sugahara K. Potential therapeutic application of chondroitin sulfate/dermatan sulfate. Curr Drug Discov Technol. 2008;5:289–301.
  • Ayres Pereira M, Mandel Clausen T, Pehrson C, et al. Placental sequestration of plasmodium falciparum malaria parasites is mediated by the interaction between VAR2CSA and chondroitin sulfate A on syndecan-1. Plos Pathog. 2016;12:e1005831.
  • Achur RN, Valiyaveettil M, Alkhalil A, et al. Characterization of proteoglycans of human placenta and identification of unique chondroitin sulfate proteoglycans of the intervillous spaces that mediate the adherence of Plasmodium falciparum-infected erythrocytes to the placenta. J Biol Chem. 2000;275:40344–40356. Epub 2000 Sep 27.
  • Beeson JG, Andrews KT, Boyle M, et al. Structural basis for binding of Plasmodium falciparum erythrocyte membrane protein 1 to chondroitin sulfate and placental tissue and the influence of protein polymorphisms on binding specificity. J Biol Chem. 2007;282:22426–22436.
  • Salanti A, Clausen TM, Agerbaek MO, et al. Targeting human cancer by a glycosaminoglycan binding malaria protein. Cancer Cell. 2015;28:500–514.
  • Afratis N, Gialeli C, Nikitovic D, et al. Glycosaminoglycans: key players in cancer cell biology and treatment. Febs J. 2012;279:1177–1197. Epub 2012 Feb 16.
  • WHO. Guidelines for the treatment of malaria. 3rd ed. Geneva: World Health Organization; 2015. Available from: http://www.who.int/malaria/publications/atoz/9789241549127/en/
  • Gamble CL, Ekwaru JP, Ter Kuile FO. Insecticide-treated nets for preventing malaria in pregnancy. Cochrane Database Syst Rev. 2006;(2):CD003755.
  • Radeva-Petrova D, Kayentao K, Ter Kuile FO, et al. Drugs for preventing malaria in pregnant women in endemic areas: any drug regimen versus placebo or no treatment. Cochrane Database Syst Rev. 2014;(10):CD000169.
  • Desai M, Gutman J, L’Lanziva A, et al. Intermittent screening and treatment or intermittent preventive treatment with dihydroartemisinin-piperaquine versus intermittent preventive treatment with sulfadoxine-pyrimethamine for the control of malaria during pregnancy in western Kenya: an open-label, three-group, randomised controlled superiority trial. Lancet. 2015;386:2507–2519.
  • Desai M, Gutman J, Taylor SM, et al. Impact of sulfadoxine-pyrimethamine resistance on effectiveness of intermittent preventive therapy for malaria in pregnancy at clearing infections and preventing low birth weight. Clin Infect Dis. 2016;62:323–333.
  • Chico RM, Moss WJ. Prevention of malaria in pregnancy: a fork in the road? Lancet. 2015;386:2454–2456.
  • Tagbor H, Bruce J, Agbo M, et al. Intermittent screening and treatment versus intermittent preventive treatment of malaria in pregnancy: a randomised controlled non-inferiority trial. Plos One. 2010;5:e14425.
  • Tagbor H, Cairns M, Bojang K, et al. A non-inferiority, individually randomized trial of intermittent screening and treatment versus intermittent preventive treatment in the control of malaria in pregnancy. Plos One. 2015;10:e0132247.
  • Madanitsa M, Kalilani L, Mwapasa V, et al. Scheduled intermittent screening with rapid diagnostic tests and treatment with dihydroartemisinin-piperaquine versus intermittent preventive therapy with sulfadoxine-pyrimethamine for malaria in pregnancy in malawi: an open-label randomized controlled trial. Plos Med. 2016;13:e1002124.
  • van Eijk AM, Hill J, Larsen DA, et al. Coverage of intermittent preventive treatment and insecticide-treated nets for the control of malaria during pregnancy in sub-Saharan Africa: a synthesis and meta-analysis of national survey data, 2009-11. Lancet Infect Dis. 2013;13:1029–1042.
  • Gonzalez R, Sevene E, Jagoe G, et al. A public health paradox: the women most vulnerable to malaria are the least protected. Plos Med. 2016;13:e1002014.
  • Schmiegelow C, Minja D, Oesterholt M, et al. Malaria and fetal growth alterations in the 3(rd) trimester of pregnancy: a longitudinal ultrasound study. Plos One. 2013;8:e53794.
  • Huynh BT, Fievet N, Gbaguidi G, et al. Influence of the timing of malaria infection during pregnancy on birth weight and on maternal anemia in Benin. Am J Trop Med Hyg. 2011;85:214–220.
  • Cottrell G, Mary JY, Barro D, et al. The importance of the period of malarial infection during pregnancy on birth weight in tropical Africa. Am J Trop Med Hyg. 2007;76:849–854.
  • Kalilani L, Mofolo I, Chaponda M, et al. The effect of timing and frequency of Plasmodium falciparum infection during pregnancy on the risk of low birth weight and maternal anemia. Trans R Soc Trop Med Hyg. 2010;104:416–422.
  • Kraemer SM, Kyes SA, Aggarwal G, et al. Patterns of gene recombination shape var gene repertoires in Plasmodium falciparum: comparisons of geographically diverse isolates. BMC Genomics. 2007;8:45.
  • Trimnell AR, Kraemer SM, Mukherjee S, et al. Global genetic diversity and evolution of var genes associated with placental and severe childhood malaria. Mol Biochem Parasitol. 2006;148:169–180.
  • Duffy MF, Caragounis A, Noviyanti R, et al. Transcribed var genes associated with placental malaria in Malawian women. Infect Immun. 2006;74:4875–4883.
  • Sander AF, Salanti A, Lavstsen T, et al. Multiple var2csa-type PfEMP1 genes located at different chromosomal loci occur in many Plasmodium falciparum isolates. Plos One. 2009;4:e6667.
  • Sander AF, Salanti A, Lavstsen T, et al. Positive selection of Plasmodium falciparum parasites with multiple var2csa-type PfEMP1 genes during the course of infection in pregnant women. J Infect Dis. 2011;203:1679–1685. Epub 2011 May 20.
  • Doritchamou J, Sabbagh A, Jespersen JS, et al. Identification of a major dimorphic region in the functionally critical N-terminal ID1 domain of VAR2CSA. Plos One. 2015;10:e0137695.
  • Barfod L, Bernasconi NL, Dahlback M, et al. Human pregnancy-associated malaria-specific B cells target polymorphic, conformational epitopes in VAR2CSA. Mol Microbiol. 2007;63:335–347.
  • Avril M, Hathaway MJ, Srivastava A, et al. Antibodies to a full-length VAR2CSA immunogen are broadly strain-transcendent but do not cross-inhibit different placental-type parasite isolates. Plos One. 2011;6:e16622.
  • Salanti A, Resende M, Ditlev SB, et al. Several domains from VAR2CSA can induce Plasmodium falciparum adhesion-blocking antibodies. Malar J. 2010;9:11. Epub 2010 Jan 13.
  • Pinto VV, Ditlev SB, Jensen KE, et al. Differential induction of functional IgG using the Plasmodium falciparum placental malaria vaccine candidate VAR2CSA. Plos One. 2011;6:e17942. Epub 2011 Apr 6.
  • Gamain B, Trimnell AR, Scheidig C, et al. Identification of multiple chondroitin sulfate A (CSA)-binding domains in the var2CSA gene transcribed in CSA-binding parasites. J Infect Dis. 2005;191:1010–1013.
  • Avril M, Gamain B, Lepolard C, et al. Characterization of anti-var2CSA-PfEMP1 cytoadhesion inhibitory mouse monoclonal antibodies. Microbes Infect /Institut Pasteur. 2006;8:2863–2871.
  • Bir N, Yazdani SS, Avril M, et al. Immunogenicity of Duffy binding-like domains that bind chondroitin sulfate A and protection against pregnancy-associated malaria. Infect Immun. 2006;74:5955–5963.
  • Dahlback M, Rask TS, Andersen PH, et al. Epitope mapping and topographic analysis of VAR2CSA DBL3X involved in P. falciparum placental sequestration. Plos Pathog. 2006;2:e124. Epub 2006 Nov 23.
  • Higgins MK. The structure of a chondroitin sulfate-binding domain important in placental malaria. J Biol Chem. 2008;283:21842–21846.
  • Resende M, Ditlev SB, Nielsen MA, et al. Chondroitin sulphate A (CSA)-binding of single recombinant Duffy-binding-like domains is not restricted to Plasmodium falciparum erythrocyte membrane protein 1 expressed by CSA-binding parasites. Int J Parasitol. 2009;39:1195–1204. Epub 2009 Mar 28.
  • Singh K, Gittis AG, Nguyen P, et al. Structure of the DBL3x domain of pregnancy-associated malaria protein VAR2CSA complexed with chondroitin sulfate A. Nat Struct Mol Biol. 2008;15:932–938.
  • Singh K, Gitti RK, Diouf A, et al. Subdomain 3 of Plasmodium falciparum VAR2CSA DBL3x is identified as a minimal chondroitin sulfate A-binding region. J Biol Chem. 2010;285:24855–24862.
  • Khunrae P, Dahlback M, Nielsen MA, et al. Full-length recombinant Plasmodium falciparum VAR2CSA binds specifically to CSPG and induces potent parasite adhesion-blocking antibodies. J Mol Biol. 2010;397:826–834. Epub 2010 Jan 30.
  • Srivastava A, Gangnard S, Round A, et al. Full-length extracellular region of the var2CSA variant of PfEMP1 is required for specific, high-affinity binding to CSA. Proc Natl Acad Sci U S A. 2010;107:4884–4889.
  • Dahlback M, Jorgensen LM, Nielsen MA, et al. The chondroitin sulfate A-binding site of the VAR2CSA protein involves multiple N-terminal domains. J Biol Chem. 2011;286:15908–15917. Epub 2011 Mar 15.
  • Srivastava A, Gangnard S, Dechavanne S, et al. Var2CSA minimal CSA binding region is located within the N-terminal region. Plos One. 2011;6:e20270.
  • Clausen TM, S C, Dahlback M, et al. Structural and functional insight into how the Plasmodium falciparum VAR2CSA protein mediates binding to chondroitin sulfate A in placental malaria. J Biol Chem. 2012;287:23332–23345. Epub 2012 May 10.
  • Andersen P, Nielsen MA, Resende M, et al. Structural insight into epitopes in the pregnancy-associated malaria protein VAR2CSA. Plos Pathog. 2008;4:e42. Epub 2008 Feb 20.
  • Khunrae P, Philip JM, Bull DR, et al. Structural comparison of two CSPG-binding DBL domains from the VAR2CSA protein important in malaria during pregnancy. J Mol Biol. 2009;393:202–213.
  • Teo A, Hasang W, Randall LM, et al. Decreasing malaria prevalence and its potential consequences for immunity in pregnant women. J Infect Dis. 2014;210:1444–1455.
  • Lambert LH, Bullock JL, Cook ST, et al. Antigen reversal identifies targets of opsonizing IgGs against pregnancy-associated malaria. Infect Immun. 2014;82:4842–4853.
  • Nielsen MA, Salanti A. High-throughput testing of antibody-dependent binding inhibition of placental malaria parasites. Methods Mol Biol. 2015;1325:241–253.
  • Saveria T, Duffy PE, Fried M. Evaluation of pregnancy malaria vaccine candidates: the binding inhibition assay. Methods Mol Biol. 2015;1325:231–239.
  • Cooke BM, Rogerson SJ, Brown GV, et al. Adhesion of malaria-infected red blood cells to chondroitin sulfate A under flow conditions. Blood. 1996;88:4040–4044.
  • Fernandez P, Petres S, Mecheri S, et al. Strain-transcendent immune response to recombinant Var2CSA DBL5-epsilon domain block P. falciparum adhesion to placenta-derived BeWo cells under flow conditions. Plos One. 2010;5:e12558. Epub 2010 Sep 15.
  • Lecarpentier E, Bhatt M, Bertin GI, et al. Computational fluid dynamic simulations of maternal circulation: wall shear stress in the human placenta and its biological implications. Plos One. 2016;11:e0147262.
  • Avril M, Traore B, Costa FT, et al. Placenta cryosections for study of the adhesion of Plasmodium falciparum-infected erythrocytes to chondroitin sulfate A in flow conditions. Microbes Infect /Institut Pasteur. 2004;6:249–255.
  • Schmidt A, Morales-Prieto DM, Pastuschek J, et al. Only humans have human placentas: molecular differences between mice and humans. J Reprod Immunol. 2015;108:65–71.
  • Hall N, Karras M, Raine JD, et al. A comprehensive survey of the Plasmodium life cycle by genomic, transcriptomic, and proteomic analyses. Science. 2005;307:82–86.
  • De Moraes LV, Tadokoro CE, Gomez-Conde I, et al. Intravital placenta imaging reveals microcirculatory dynamics impact on sequestration and phagocytosis of Plasmodium-infected erythrocytes. Plos Pathog. 2013;9:e1003154.
  • Neres R, Marinho CR, Goncalves LA, et al. Pregnancy outcome and placenta pathology in Plasmodium berghei ANKA infected mice reproduce the pathogenesis of severe malaria in pregnant women. Plos One. 2008;3:e1608.
  • De Moraes LV, Dechavanne S, Sousa PM, et al. Model for pre-clinical studies on Var2CSA-mediated pathology associated to malaria in pregnancy. Infect Immun. 2016.
  • Onditi FI, Nyamongo OW, Omwandho CO, et al. Parasite accumulation in placenta of non-immune baboons during Plasmodium knowlesi infection. Malar J. 2015;14:118.
  • Howard RJ, Barnwell JW, Kao V. Antigenic variation of Plasmodium knowlesi malaria: identification of the variant antigen on infected erythrocytes. Proc Natl Acad Sci U S A. 1983;80:4129–4133.
  • Al-Khedery B, Barnwell JW, Galinski MR. Antigenic variation in malaria: a 3ʹ genomic alteration associated with the expression of a P. knowlesi variant antigen. Molecular Cell. 1999;3:131–141.
  • Pehrson C, Mathiesen L, Kk H, et al. Adhesion of Plasmodium falciparum infected erythrocytes in ex vivo perfused placental tissue: a novel model of placental malaria. Malar J. 2016;15:292.
  • Nielsen MA, Resende M, De Jongh WA, et al. The influence of sub-unit composition and expression system on the functional antibody response in the development of a VAR2CSA based plasmodium falciparum placental malaria vaccine. Plos One. 2015;10:e0135406.
  • Doritchamou JY, Herrera R, Aebig JA, et al. VAR2CSA domain-specific analysis of naturally acquired functional antibodies to plasmodium falciparum placental malaria. J Infect Dis. 2016;214:577–586.
  • Doritchamou J, Bigey P, Nielsen MA, et al. Differential adhesion-inhibitory patterns of antibodies raised against two major variants of the NTS-DBL2X region of VAR2CSA. Vaccine. 2013;31:4516–4522.
  • Fried M, Avril M, Chaturvedi R, et al. Multilaboratory approach to preclinical evaluation of vaccine immunogens for placental malaria. Infect Immun. 2013;81:487–495.
  • Tuebingen university hospital, Germany; Safety and immunogenicity of the placental malaria vaccine candidate PAMVAC variously adjuvanted (PAMVAC). In: clinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US); 2000. [cited 2016 Jul 25]. Available from: https://clinicaltrials.gov/ct2/show/NCT02647489 NLM Identifier: NCT02647489
  • Institut National de la Santé Et de la Recherche Médicale, France; Trial to Evaluate the Safety and Immunogenicity of a Placental Malaria Vaccine Candidate (PRIMVAC) in healthy adults (PRIMALVAC). In: clinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US); 2000. [cited 2016 Jul 25]. Available from: https://clinicaltrials.gov/ct2/show/NCT02658253 NLM Identifier: NCT02658253
  • Williams J, Njie F, Cairns M, et al. Non-falciparum malaria infections in pregnant women in West Africa. Malar J. 2016;15:53.
  • Chotivanich K, Udomsangpetch R, Suwanarusk R, et al. Plasmodium vivax adherence to placental glycosaminoglycans. Plos One. 2012;7:e34509.
  • Mayor A, Bardaji A, Felger I, et al. Placental infection with Plasmodium vivax: a histopathological and molecular study. J Infect Dis. 2012;206:1904–1910.
  • Nosten F, McGready R, Simpson JA, et al. Effects of Plasmodium vivax malaria in pregnancy. Lancet. 1999;354:546–549.
  • Barber BE, Bird E, Wilkes CS, et al. Plasmodium knowlesi malaria during pregnancy. J Infect Dis. 2015;211:1104–1110.
  • Flick K, Scholander C, Chen Q, et al. Role of nonimmune IgG bound to PfEMP1 in placental malaria. Science. 2001;293:2098–2100.
  • Beeson JG, Rogerson SJ, Cooke BM, et al. Adhesion of Plasmodium falciparum-infected erythrocytes to hyaluronic acid in placental malaria. Nat Med. 2000;6:86–90.
  • Rasti N, Namusoke F, Chene A, et al. Nonimmune immunoglobulin binding and multiple adhesion characterize Plasmodium falciparum-infected erythrocytes of placental origin. Proc Natl Acad Sci U S A. 2006;103:13795–13800.
  • Fried M, Domingo GJ, Gowda CD, et al. Plasmodium falciparum: chondroitin sulfate A is the major receptor for adhesion of parasitized erythrocytes in the placenta. Exp Parasitol. 2006;113:36–42.
  • Muthusamy A, Achur RN, Valiyaveettil M, et al. Chondroitin sulfate proteoglycan but not hyaluronic acid is the receptor for the adherence of Plasmodium falciparum-infected erythrocytes in human placenta, and infected red blood cell adherence up-regulates the receptor expression. Am J Pathol. 2007;170:1989–2000.
  • Hofmann-Kiefer KF, Chappell D, Knabl J, et al. Placental syncytiotrophoblast maintains a specific type of glycocalyx at the fetomaternal border: the glycocalyx at the fetomaternal interface in healthy women and patients with HELLP syndrome. Reprod Sciences. 2013;20:1237–1245.
  • Faioni EM, Fontana G, Razzari C, et al. Activation of protein c in human trophoblasts in culture and downregulation of trophoblast endothelial protein C receptor by TNF-alpha. Reprod Sciences. 2015;22:1042–1048.
  • Avril M, Kulasekara BR, Gose SO, et al. Evidence for globally shared, cross-reacting polymorphic epitopes in the pregnancy-associated malaria vaccine candidate VAR2CSA. Infect Immun. 2008;76:1791–1800.
  • Tuikue Ndam NG, Fievet N, Bertin G, et al. Variable adhesion abilities and overlapping antigenic properties in placental Plasmodium falciparum isolates. J Infect Dis. 2004;190:2001–2009. Epub 2004 Nov 6.
  • Barfod L, Dobrilovic T, Magistrado P, et al. Chondroitin sulfate A-adhering Plasmodium falciparum-infected erythrocytes express functionally important antibody epitopes shared by multiple variants. J Immunol. 2010;185:7553–7561. Epub 2010 Nov 17.
  • Nielsen MA, Pinto VV, Resende M, et al. Induction of adhesion-inhibitory antibodies against placental Plasmodium falciparum parasites by using single domains of VAR2CSA. Infect Immun. 2009;77:2482–2487. Epub 2009 Mar 25.
  • Magistrado PA, Minja D, Doritchamou J, et al. High efficacy of anti DBL4varepsilon-VAR2CSA antibodies in inhibition of CSA-binding Plasmodium falciparum-infected erythrocytes from pregnant women. Vaccine. 2011;29:437–443.
  • Bigey P, Gnidehou S, Doritchamou J, et al. The NTS-DBL2X region of VAR2CSA induces cross-reactive antibodies that inhibit adhesion of several Plasmodium falciparum isolates to chondroitin sulfate A. J Infect Dis. 2011;204:1125–1133.
  • Hommel M, Elliott SR, Soma V, et al. Evaluation of the antigenic diversity of placenta-binding Plasmodium falciparum variants and the antibody repertoire among pregnant women. Infect Immun. 2010;78:1963–1978.
  • Bordbar B, Tuikue-Ndam N, Bigey P, et al. Identification of Id1-DBL2X of VAR2CSA as a key domain inducing highly inhibitory and cross-reactive antibodies. Vaccine. 2012;30:1343–1348.
  • Rovira-Vallbona E, Monteiro I, Bardaji A, et al. VAR2CSA signatures of high Plasmodium falciparum parasitemia in the placenta. Plos One. 2013;8:e69753.
  • Bordbar B, Tuikue Ndam N, Renard E, et al. Genetic diversity of VAR2CSA ID1-DBL2Xb in worldwide Plasmodium falciparum populations: impact on vaccine design for placental malaria. Infect Genet Evol. 2014;25:81–92.
  • Tuikue-Ndam N, Deloron P. Developing vaccines to prevent malaria in pregnant women. Expert Opin Biol Ther. 2015;15:1173–1182.
  • Barfod L, Bernasconi NL, Dahlback M, et al. Human pregnancy-associated malaria-specific B cells target polymorphic, conformational epitopes in VAR2CSA. Mol Microbiol. 2007;63:335–347. Epub 2006 Dec 21.
  • Rts SCTP. Efficacy and safety of RTS,S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: final results of a phase 3, individually randomised, controlled trial. Lancet. 2015;386:31–45.
  • Schiller JT, Lowy DR. Raising expectations for subunit vaccine. J Infect Dis. 2015;211:1373–1375.
  • Thrane S, Janitzek CM, Matondo S, et al. Bacterial superglue enables easy development of efficient virus-like particle based vaccines. J Nanobiotechnology. 2016;14:30.
  • Thrane S, Janitzek CM, Agerbaek MO, et al. A novel virus-like particle based vaccine platform displaying the placental malaria antigen VAR2CSA. Plos One. 2015;10:e0143071.
  • Safaeian M, Kemp TJ, Pan DY, et al. Cross-protective vaccine efficacy of the bivalent HPV vaccine against HPV31 is associated with humoral immune responses: results from the Costa Rica Vaccine Trial. Hum Vaccin Immunother. 2013;9:1399–1406.
  • Wheeler CM, Skinner SR, Del Rosario-Raymundo MR, et al. Efficacy, safety, and immunogenicity of the human papillomavirus 16/18 AS04-adjuvanted vaccine in women older than 25 years: 7-year follow-up of the phase 3, double-blind, randomised controlled VIVIANE study. Lancet Infect Dis. 2016;16:1154–1168.
  • Kushnir N, Streatfield SJ, Yusibov V. Virus-like particles as a highly efficient vaccine platform: diversity of targets and production systems and advances in clinical development. Vaccine. 2012;31:58–83.
  • Foetal Exposure and Epidemiological Transition - University of Copenhagen. [cited 2016 Dec 13]. Available from: http://publichealth.ku.dk/sections/global/project/foetalforncd/
  • Development of a VAR2CSA based placental malaria vaccine (PlacMalVAc) - University of Copenhagen. [cited 2016 Dec 13]. Available from: http://cmp.ku.dk/collaborations/placmalvac/
  • Chene A, Houard S, Nielsen MA, et al. Clinical development of placental malaria vaccines and immunoassays harmonization: a workshop report. Malar J. 2016;15:476.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.