3,985
Views
22
CrossRef citations to date
0
Altmetric
Review

The use of transgenic parasites in malaria vaccine research

, , , , & ORCID Icon
Pages 685-697 | Received 02 Feb 2017, Accepted 18 May 2017, Published online: 30 May 2017

References

  • Van Dijk MR, Janse CJ, Waters AP. Expression of a plasmodium gene introduced into subtelomeric regions of plasmodium berghei chromosomes. Science. 1996;271:662–665.
  • Carvalho TG, Ménard R. Manipulating the Plasmodium genome. Curr Issues Mol Biol. 2005;7:39–55.
  • De Koning-Ward TF, Gilson PR, Crabb BS. Advances in molecular genetic systems in malaria. Nat Rev Microbiol. 2015;13:373–387.
  • Amino R, Ménard R, Frischknecht F. In vivo imaging of malaria parasites–recent advances and future directions. Curr Opin Microbiol. 2005;8:407–414.
  • Heussler V, Doerig C. In vivo imaging enters parasitology. Trends Parasitol. 2006;22:192–196; discussion 5–6.
  • Siciliano G, Alano P. Enlightening the malaria parasite life cycle: bioluminescent Plasmodium in fundamental and applied research. Front Microbiol. 2015;6:391.
  • De Niz M, Burda PC, Kaiser G, et al. Progress in imaging methods: insights gained into Plasmodium biology. Nat Rev Microbiol. 2017;15:37–54.
  • Franke-Fayard B, Fonager J, Braks A, et al. Sequestration and tissue accumulation of human malaria parasites: can we learn anything from rodent models of malaria? Plos Pathog. 2010;6:e1001032.
  • Lin J-W, Shaw TN, Annoura T, et al. The subcellular location of ovalbumin in Plasmodium berghei blood stages influences the magnitude of T-cell responses. Infect Immun. 2014;82:4654–4665.
  • Montagna GN, Beigier-Bompadre M, Becker M, et al. Antigen export during liver infection of the malaria parasite augments protective immunity. MBio. 2014;5:e01321–14.
  • Fernandez-Ruiz D, Ng WY, Holz LE, et al. Liver-resident memory CD8(+) T cells form a front-line defense against Malaria liver-stage infection. Immunity. 2016;45:889–902.
  • Holz LE, Fernandez-Ruiz D, Heath WR. Protective immunity to liver-stage malaria. Clin Transl Immunol. 2016;5:e105.
  • Frevert U, Nacer A, Cabrera M, et al. Imaging Plasmodium immunobiology in the liver, brain, and lung. Parasitol Int. 2014;63:171–186.
  • Stone WJ, Churcher TS, Graumans W, et al. A scalable assessment of Plasmodium falciparum transmission in the standard membrane-feeding assay, using transgenic parasites expressing green fluorescent protein-luciferase. J Infect Dis. 2014;210:1456–1463.
  • Wang Z, Liu M, Liang X, et al. A flow cytometry-based quantitative drug sensitivity assay for all Plasmodium falciparum gametocyte stages. Plos One. 2014;9:e93825.
  • Wilson DW, Crabb BS, Beeson JG. Development of fluorescent Plasmodium falciparum for in vitro growth inhibition assays. Malar J. 2010;9:152.
  • Swann J, Corey V, Scherer CA, et al. High-throughput luciferase-based assay for the discovery of therapeutics that prevent Malaria. ACS Infect Dis. 2016;2:281–293.
  • Voorberg-van der Wel A, Zeeman AM, Van Amsterdam SM, et al. Transgenic fluorescent Plasmodium cynomolgi liver stages enable live imaging and purification of Malaria hypnozoite-forms. Plos One. 2013;8:e54888.
  • Annoura T, Chevalley S, Janse CJ, et al. Quantitative analysis of Plasmodium berghei liver stages by bioluminescence imaging. Methods Mol Biol. 2013;923:429–443.
  • Le Bihan A, De Kanter R, Angulo-Barturen I, et al. Characterization of novel antimalarial compound ACT-451840: preclinical assessment of activity and dose-efficacy modeling. PLoS Med. 2016;13:e1002138.
  • Lin J-W, Sajid M, Ramesar J, et al. Screening inhibitors of P. berghei blood stages using bioluminescent reporter parasites. Methods Mol Biol. 2013;923:507–522.
  • Prudêncio M, Mota MM, Mendes AM. A toolbox to study liver stage malaria. Trends Parasitol. 2011;27:565–574.
  • Sack BK, Miller JL, Vaughan AM, et al. Measurement of antibody-mediated reduction of plasmodium yoelii liver burden by bioluminescent imaging. Methods Mol Biol. 2015;1325:69–80.
  • Otto TD, Böhme U, Jackson AP, et al. A comprehensive evaluation of rodent malaria parasite genomes and gene expression. BMC Biol. 2014;12:86.
  • Tewari R, Patzewitz EM, Poulin B, et al. Development of a transgenic Plasmodium berghei line (Pb pfpkg) expressing the P. falciparum cGMP-dependent protein kinase, a novel antimalarial drug target. Plos One. 2014;9:e96923.
  • Blume M, Hliscs M, Rodriguez-Contreras D, et al. A constitutive pan-hexose permease for the Plasmodium life cycle and transgenic models for screening of antimalarial sugar analogs. Faseb J. 2011;25:1218–1229.
  • De Moraes LV, Dechavanne S, Sousa PM, et al. Murine model for preclinical studies of Var2CSA-mediated pathology associated with Malaria in pregnancy. Infect Immun. 2016;84:1761–1774.
  • Cockburn I. Chimeric parasites as tools to study Plasmodium immunology and assess malaria vaccines. Methods Mol Biol. 2013;923:465–479.
  • Salman AM, Mogollon CM, Lin JW, et al. Generation of transgenic rodent malaria parasites expressing human malaria parasite proteins. Methods Mol Biol. 2015;1325:257–286.
  • Mlambo G, Kumar N. Transgenic rodent Plasmodium berghei parasites as tools for assessment of functional immunogenicity and optimization of human malaria vaccines. Eukaryot Cell. 2008;7:1875–1879.
  • Longley RJ, Salman AM, Cottingham MG, et al. Comparative assessment of vaccine vectors encoding ten malaria antigens identifies two protective liver-stage candidates. Sci Rep. 2015;5:11820.
  • Longley RJ, Halbroth BR, Salman AM, et al. Assessment of the Plasmodium falciparum pre-erythrocytic antigen UIS3 as a potential candidate for a malaria vaccine. Infect Immun. 2016;85(3):e00641-16.
  • Ewer KJ, Sierra-Davidson K, Salman AM, et al. Progress with viral vectored malaria vaccines: a multi-stage approach involving “unnatural immunity”. Vaccine. 2015;33:7444–7451.
  • Tewari R, Spaccapelo R, Bistoni F, et al. Function of region I and II adhesive motifs of Plasmodium falciparum circumsporozoite protein in sporozoite motility and infectivity. J Biol Chem. 2002;277:47613–47618.
  • Zhang M, Kaneko I, Tsao T, et al. A highly infectious Plasmodium yoelii parasite, bearing Plasmodium falciparum circumsporozoite protein. Malar J. 2016;15:201.
  • Bauza K, Malinauskas T, Pfander C, et al. Efficacy of a Plasmodium vivax malaria vaccine using ChAd63 and modified vaccinia Ankara expressing thrombospondin-related anonymous protein as assessed with transgenic Plasmodium berghei parasites. Infect Immun. 2014;82:1277–1286.
  • Ramjanee S, Robertson JS, Franke-Fayard B, et al. The use of transgenic Plasmodium berghei expressing the Plasmodium vivax antigen P25 to determine the transmission-blocking activity of sera from malaria vaccine trials. Vaccine. 2007;25:886–894.
  • Mlambo G, Maciel J, Kumar N. Murine model for assessment of Plasmodium falciparum transmission-blocking vaccine using transgenic Plasmodium berghei parasites expressing the target antigen Pfs25. Infect Immun. 2008;76:2018–2024.
  • Espinosa DA, Vega-Rodriguez J, Flores-Garcia Y, et al. The P. falciparum cell-traversal protein for ookinetes and sporozoites as a candidate for pre-erythrocytic and transmission-blocking vaccines. Infect Immun. 2017;85(2):e00498-516.
  • Salman AM, Montoya-Diaz E, Lall A, et al. Rational development of a highly protective P. vivax vaccine evaluated using transgenic rodent parasite challenge models. Sci Rep;Forthcoming 2017.
  • Alves E, Salman AM, Leoratti F, et al. Evaluation of PvCelTOS as a pre-erythrocytic P. vivax vaccine. Clin Vaccine Immunol. 2017;24(4):e00501-16.
  • Persson C, Oliveira GA, Sultan AA, et al. Cutting edge: a new tool to evaluate human pre-erythrocytic malaria vaccines: rodent parasites bearing a hybrid Plasmodium falciparum circumsporozoite protein. J Immunol. 2002;169:6681–6685.
  • De Koning-Ward TF, O’Donnell RA, Drew DR, et al. A new rodent model to assess blood stage immunity to the Plasmodium falciparum antigen merozoite surface protein 119 reveals a protective role for invasion inhibitory antibodies. J Exp Med. 2003;198:869–875.
  • Cao Y, Zhang D, Pan W. Construction of transgenic Plasmodium berghei as a model for evaluation of blood-stage vaccine candidate of Plasmodium falciparum chimeric protein 2.9. Plos One. 2009;4:e6894.
  • Espinosa DA, Yadava A, Angov E, et al. Development of a chimeric Plasmodium berghei strain expressing the repeat region of the P. vivax circumsporozoite protein for in vivo evaluation of vaccine efficacy. Infect Immun. 2013;81:2882–2887.
  • Mizutani M, Iyori M, Blagborough AM, et al. Baculovirus-vectored multistage Plasmodium vivax vaccine induces both protective and transmission-blocking immunities against transgenic rodent malaria parasites. Infect Immun. 2014;82:4348–4357.
  • Mizutani M, Fukumoto S, Soubeiga AP, et al. Development of a Plasmodium berghei transgenic parasite expressing the full-length Plasmodium vivax circumsporozoite VK247 protein for testing vaccine efficacy in a murine model. Malar J. 2016;15:251.
  • Bijker EM, Borrmann S, Kappe SH, et al. Novel approaches to whole sporozoite vaccination against malaria. Vaccine. 2015;33:7462–7468.
  • Hollingdale MR, Sedegah M. Development of whole sporozoite malaria vaccines. Expert Rev Vaccines. 2017;16:45–54.
  • Khan SM, Janse CJ, Kappe SH, et al. Genetic engineering of attenuated malaria parasites for vaccination. Curr Opin Biotechnol. 2012;23:908–916.
  • Dube A, Gupta R, Singh N. Reporter genes facilitating discovery of drugs targeting protozoan parasites. Trends Parasitol. 2009;25:432–439.
  • Franke-Fayard B, Trueman H, Ramesar J, et al. A Plasmodium berghei reference line that constitutively expresses GFP at a high level throughout the complete life cycle. Mol Biochem Parasitol. 2004;137:23–33.
  • Hopp CS, Chiou K, Ragheb DR, et al. Longitudinal analysis of Plasmodium sporozoite motility in the dermis reveals component of blood vessel recognition. Elife. 2015;4:e07789.
  • Vos MW, Stone WJ, Koolen KM, et al. A semi-automated luminescence based standard membrane feeding assay identifies novel small molecules that inhibit transmission of malaria parasites by mosquitoes. Sci Rep. 2015;5:18704.
  • Lucantoni L, Fidock DA, Avery VM. Luciferase-based, high-throughput assay for screening and profiling transmission-blocking compounds against plasmodium falciparum gametocytes. Antimicrob Agents Chemother. 2016;60:2097–2107.
  • Kimura K, Kimura D, Matsushima Y, et al. CD8+ T cells specific for a malaria cytoplasmic antigen form clusters around infected hepatocytes and are protective at the liver stage of infection. Infect Immun. 2013;81:3825–3834.
  • Lundie RJ, De Koning-Ward TF, Davey GM, et al. Blood-stage Plasmodium infection induces CD8+ T lymphocytes to parasite-expressed antigens, largely regulated by CD8alpha+ dendritic cells. Proc Natl Acad Sci U S A. 2008;105:14509–14514.
  • Miyakoda M, Kimura D, Yuda M, et al. Malaria-specific and nonspecific activation of CD8+ T cells during blood stage of Plasmodium berghei infection. J Immunol. 2008;181:1420–1428.
  • Blagborough AM, Musiychuk K, Bi H, et al. Transmission blocking potency and immunogenicity of a plant-produced Pvs25-based subunit vaccine against Plasmodium vivax. Vaccine. 2016;34:3252–3259.
  • Bergmann-Leitner ES, Duncan EH, Mullen GE, et al. Critical evaluation of different methods for measuring the functional activity of antibodies against malaria blood stage antigens. Am J Trop Med Hyg. 2006;75:437–442.
  • Duncan EH, Bergmann-Leitner ES. Miniaturized growth inhibition assay to assess the anti-blood stage activity of antibodies. Methods Mol Biol. 2015;1325:153–165.
  • Blagborough AM, Yoshida S, Sattabongkot J, et al. Intranasal and intramuscular immunization with Baculovirus Dual Expression System-based Pvs25 vaccine substantially blocks Plasmodium vivax transmission. Vaccine. 2010;28:6014–6020.
  • Miura K, Deng B, Tullo G, et al. Qualification of standard membrane-feeding assay with Plasmodium falciparum malaria and potential improvements for future assays. PLoS One. 2013;8:e57909.
  • Ploemen IH, Prudencio M, Douradinha BG, et al. Visualisation and quantitative analysis of the rodent malaria liver stage by real time imaging. Plos One. 2009;4:e7881.
  • Miller JL, Murray S, Vaughan AM, et al. Quantitative bioluminescent imaging of pre-erythrocytic malaria parasite infection using luciferase-expressing Plasmodium yoelii. Plos One. 2013;8:e60820.
  • Meister S, Plouffe DM, Kuhen KL, et al. Imaging of Plasmodium liver stages to drive next-generation antimalarial drug discovery. Science. 2011;334:1372–1377.
  • Mwakingwe A, Ting L-M, Hochman S, et al. Noninvasive real-time monitoring of liver-stage development of bioluminescent Plasmodium parasites. J Infect Dis. 2009;200:1470–1478.
  • Portugal S, Carret C, Recker M, et al. Host-mediated regulation of superinfection in malaria. Nat Med. 2011;17:732–737.
  • Keitany GJ, Sack B, Smithers H, et al. Immunization of mice with live-attenuated late liver stage-arresting Plasmodium yoelii parasites generates protective antibody responses to preerythrocytic stages of malaria. Infect Immun. 2014;82:5143–5153.
  • Sack BK, Miller JL, Vaughan AM, et al. Model for in vivo assessment of humoral protection against malaria sporozoite challenge by passive transfer of monoclonal antibodies and immune serum. Infect Immun. 2014;82:808–817.
  • Miller JL, Sack BK, Baldwin M, et al. Interferon-mediated innate immune responses against malaria parasite liver stages. Cell Rep. 2014;7:436–447.
  • Hopp CS, Sinnis P. The innate and adaptive response to mosquito saliva and Plasmodium sporozoites in the skin. Ann N Y Acad Sci. 2015;1342:37–43.
  • Cockburn IA, Tse S-W, Radtke AJ, et al. Dendritic cells and hepatocytes use distinct pathways to process protective antigen from plasmodium in vivo. Plos Pathog. 2011;7:e1001318.
  • Vanderberg JP. Imaging mosquito transmission of Plasmodium sporozoites into the mammalian host: immunological implications. Parasitol Int. 2014;63:150–164.
  • Dups JN, Pepper M, Cockburn IA. Antibody and B cell responses to Plasmodium sporozoites. Front Microbiol. 2014;5:625.
  • Ménard R, Tavares J, Cockburn I, et al. Looking under the skin: the first steps in malarial infection and immunity. Nat Rev Microbiol. 2013;11:701–712.
  • Radtke AJ, Kastenmuller W, Espinosa DA, et al. Lymph-node resident CD8alpha+ dendritic cells capture antigens from migratory malaria sporozoites and induce CD8+ T cell responses. PLoS Pathog. 2015;11:e1004637.
  • Kebaier C, Voza T, Vanderberg J. Kinetics of mosquito-injected Plasmodium sporozoites in mice: fewer sporozoites are injected into sporozoite-immunized mice. Plos Pathog. 2009;5:e1000399.
  • Vaughan AM, Mikolajczak SA, Camargo N, et al. A transgenic Plasmodium falciparum NF54 strain that expresses GFP-luciferase throughout the parasite life cycle. Mol Biochem Parasitol. 2012;186:143–147.
  • Janse CJ, Ramesar J, Waters AP. High-efficiency transfection and drug selection of genetically transformed blood stages of the rodent malaria parasite Plasmodium berghei. Nat Protoc. 2006;1:346–356.
  • Lin JW, Annoura T, Sajid M, et al. A novel ‘gene insertion/marker out’ (GIMO) method for transgene expression and gene complementation in rodent malaria parasites. PLoS One. 2011;6:e29289.
  • Wijayalath W, Majji S, Villasante EF, et al. Humanized HLA-DR4.RagKO.IL2RgammacKO.NOD (DRAG) mice sustain the complex vertebrate life cycle of Plasmodium falciparum malaria. Malar J. 2014;13:386.
  • Vaughan AM, Mikolajczak SA, Wilson EM, et al. Complete Plasmodium falciparum liver-stage development in liver-chimeric mice. J Clin Invest. 2012;122:3618–3628.
  • Sauerwein RW, Roestenberg M, Moorthy VS. Experimental human challenge infections can accelerate clinical malaria vaccine development. Nat Rev Immunol. 2011;11:57–64.
  • Espinosa DA, Radtke AJ, Zavala F. Development and assessment of transgenic rodent parasites for the preclinical evaluation of Malaria vaccines. Methods Mol Biol. 2016;1403:583–601.
  • Kafuye-Mlwilo MY, Mukherjee P, Chauhan VS. Kinetics of humoral and memory B cell response induced by the Plasmodium falciparum 19-kilodalton merozoite surface protein 1 in mice. Infect Immun. 2012;80:633–642.
  • Sachdeva S, Mohmmed A, Dasaradhi PV, et al. Immunogenicity and protective efficacy of Escherichia coli expressed Plasmodium falciparum merozoite surface protein-1(42) using human compatible adjuvants. Vaccine. 2006;24:2007–2016.
  • Bouharoun-Tayoun H, Druilhe P. Antibody-dependent cell-mediated inhibition (ADCI) of Plasmodium falciparum: one- and two-step ADCI assays. Methods Mol Biol. 2015;1325:131–144.
  • Epstein JE, Richie TL. The whole parasite, pre-erythrocytic stage approach to malaria vaccine development: a review. Curr Opin Infect Dis. 2013;26:420–428.
  • Hoffman SL, Billingsley PF, James E, et al. Development of a metabolically active, non-replicating sporozoite vaccine to prevent Plasmodium falciparum malaria. Hum Vaccin. 2010;6:97–106.
  • Hafalla JC, Rai U, Morrot A, et al. Priming of CD8+ T cell responses following immunization with heat-killed Plasmodium sporozoites. Eur J Immunol. 2006;36:1179–1186.
  • Annoura T, Ploemen IH, Van Schaijk BC, et al. Assessing the adequacy of attenuation of genetically modified malaria parasite vaccine candidates. Vaccine. 2012;30:2662–2670.
  • Labaied M, Harupa A, Dumpit RF, et al. Plasmodium yoelii sporozoites with simultaneous deletion of P52 and P36 are completely attenuated and confer sterile immunity against infection. Infect Immun. 2007;75:3758–3768.
  • Kublin JG, Mikolajczak SA, Sack BK, et al. Complete attenuation of genetically engineered Plasmodium falciparum sporozoites in human subjects. Sci Transl Med. 2017;9(371). pii: eaad9099.
  • Spring M, Murphy J, Nielsen R, et al. First-in-human evaluation of genetically attenuated Plasmodium falciparum sporozoites administered by bite of Anopheles mosquitoes to adult volunteers. Vaccine. 2013;31:4975–4983.
  • Van Schaijk BC, Ploemen IHJ, Annoura T, et al. A genetically attenuated malaria vaccine candidate based on P. falciparum b9/slarp gene-deficient sporozoites. Elife. 2014;3.
  • Nganou-Makamdop K, Ploemen I, Behet M, et al. Reduced Plasmodium berghei sporozoite liver load associates with low protective efficacy after intradermal immunization. Parasite Immunol. 2012;34:562–569.
  • Ploemen I, Behet M, Nganou-Makamdop K, et al. Evaluation of immunity against malaria using luciferase-expressing Plasmodium berghei parasites. Malar J. 2011;10:350.
  • Cockburn IA, Amino R, Kelemen RK, et al. In vivo imaging of CD8+ T cell-mediated elimination of malaria liver stages. Proc Natl Acad Sci U S A. 2013;110:9090–9095.
  • Trimnell A, Takagi A, Gupta M, et al. Genetically attenuated parasite vaccines induce contact-dependent CD8+ T cell killing of Plasmodium yoelii liver stage-infected hepatocytes. J Immunol. 2009;183:5870–5878.
  • Yewdell JW. Confronting complexity: real-world immunodominance in antiviral CD8+ T cell responses. Immunity. 2006;25:533–543.