430
Views
12
CrossRef citations to date
0
Altmetric
Review

Tackling a novel lethal virus: a focus on H7N9 vaccine development

ORCID Icon &
Pages 709-721 | Received 01 Mar 2017, Accepted 19 May 2017, Published online: 26 May 2017

References

  • Gao R, Cao B, Hu Y, et al. Human infection with a novel avian-origin influenza A (H7N9) virus. N Engl J Med. 2013;368(20):1888–1897.
  • Xiang N, Li X, Ren R, et al. Assessing change in avian influenza A(H7N9) virus infections during the fourth epidemic - China, september 2015-august 2016. MMWR Morb Mortal Wkly Rep. 2016;65(49):1390–1394.
  • Zhou L, Ren R, Yang L, et al. Sudden increase in human infection with avian influenza A(H7N9) virus in China, September-December 2016. Western Pac Surveill Response J. 2017;8(1):1–9.
  • WHO. Human infection with avian influenza A(H7N9) virus – China. Disease outbreak news. 2017 Apr 5. [cited 2017 Apr 17]. Available from: http://www.who.int/csr/don/05-april-2017-ah7n9-china/en/
  • Zhang Q, Shi J, Deng G, et al. H7N9 influenza viruses are transmissible in ferrets by respiratory droplet. Science. 2013;341(6144):410–414.
  • Ge E, Zhang R, Li D, et al. Estimating risks of inapparent avian exposure for human infection: avian influenza virus A (H7N9) in Zhejiang province China. Sci Rep. 2017;7:40016.
  • Shi J, Deng G, Liu P, et al. Isolation and characterization of H7N9 viruses from live poultry markets — implication of the source of current H7N9 infection in humans. Chin Sci Bull. 2013;58(16):1857–1863.
  • Shi Y, Zhang W, Wang F, et al. Structures and receptor binding of hemagglutinins from human-infecting H7N9 influenza viruses. Science. 2013;342(6155):243–247.
  • Zhou J, Wang D, Gao R, et al. Biological features of novel avian influenza A (H7N9) virus. Nature. 2013;499(7459):500–503.
  • Belser JA, Gustin KM, Pearce MB, et al. Pathogenesis and transmission of avian influenza A (H7N9) virus in ferrets and mice. Nature. 2013;501(7468):556–559.
  • Belser JA, Creager HM, Sun X, et al. Mammalian pathogenesis and transmission of H7N9 influenza viruses from three waves, 2013-2015. J Virol. 2016;90(9):4647–4657.
  • Wang D, Yang L, Zhu W, et al. Two outbreak sources of influenza A (H7N9) viruses have been established in China. J Virol. 2016;90(12):5561–5573.
  • Zhao Y, Yu Z, Liu L, et al. Adaptive amino acid substitutions enhance the virulence of a novel human H7N9 influenza virus in mice. Vet Microbiol. 2016;187:8–14.
  • Zoonotic influenza viruses: antigenic and genetic characteristics and development of candidate vaccine viruses for pandemic preparedness. Releve Epidemiologique Hebdomadaire. 2016;91(42):485–499.
  • Carter DM, Bloom CE, Kirchenbaum GA, et al. Cross-protection against H7N9 influenza strains using a live-attenuated H7N3 virus vaccine. Vaccine. 2015;33(1):108–116.
  • Rudenko L, Isakova-Sivak I, Donina S. H7N3 live attenuated influenza vaccine has a potential to protect against new H7N9 avian influenza virus. Vaccine. 2013;31(42):4702–4705.
  • Krammer F, Albrecht RA, Tan GS, et al. Divergent H7 immunogens offer protection from H7N9 virus challenge. J Virol. 2014;88(8):3976–3985.
  • Krammer F, Jul-Larsen A, Margine I, et al. An H7N1 influenza virus vaccine induces broadly reactive antibody responses against H7N9 in humans. Clin Vaccine Immunol. 2014;21(8):1153–1163.
  • Xu Q, Chen Z, Cheng X, et al. Evaluation of live attenuated H7N3 and H7N7 vaccine viruses for their receptor binding preferences, immunogenicity in ferrets and cross reactivity to the novel H7N9 virus. PLoS ONE. 2013;8(10):e76884.
  • Rudenko L, Isakova-Sivak I, Rekstin A. H7N9: can H7N3 live-attenuated influenza vaccine be used at the early stage of the pandemic? Expert Rev Vaccines. 2014;13(1):1–4.
  • Goff PH, Krammer F, Hai R, et al. Induction of cross-reactive antibodies to novel H7N9 influenza virus by recombinant Newcastle disease virus expressing a North American lineage H7 subtype hemagglutinin. J Virol. 2013;87(14):8235–8240.
  • Chua BY, Brown LE, Jackson DC. Considerations for the rapid deployment of vaccines against H7N9 influenza. Expert Rev Vaccines. 2014;13(11):1327–1337.
  • De Groot AS, Ardito M, Terry F, et al. Low immunogenicity predicted for emerging avian-origin H7N9: implication for influenza vaccine design. Hum Vaccin Immunother. 2013;9(5):950–956.
  • De Groot AS, Moise L, Liu R, et al. Cross-conservation of T-cell epitopes: now even more relevant to (H7N9) influenza vaccine design. Hum Vaccin Immunother. 2014;10(2):256–262.
  • Hekele A, Bertholet S, Archer J, et al. Rapidly produced SAM((R)) vaccine against H7N9 influenza is immunogenic in mice. Emerg Microbes Infect. 2013;2(8):e52.
  • Smith GE, Flyer DC, Raghunandan R, et al. Development of influenza H7N9 virus like particle (VLP) vaccine: homologous A/Anhui/1/2013 (H7N9) protection and heterologous A/chicken/Jalisco/CPA1/2012 (H7N3) cross-protection in vaccinated mice challenged with H7N9 virus. Vaccine. 2013;31(40):4305–4313.
  • Liu YV, Massare MJ, Pearce MB, et al. Recombinant virus-like particles elicit protective immunity against avian influenza A(H7N9) virus infection in ferrets. Vaccine. 2015;33(18):2152–2158.
  • Pillet S, Racine T, Nfon C, et al. Plant-derived H7 VLP vaccine elicits protective immune response against H7N9 influenza virus in mice and ferrets. Vaccine. 2015;33(46):6282–6289.
  • Zhang L, Lu J, Chen Y, et al. Characterization of humoral responses induced by an H7N9 influenza virus-like particle vaccine in BALB/C mice. Viruses. 2015;7(8):4369–4384.
  • Klausberger M, Wilde M, Palmberger D, et al. One-shot vaccination with an insect cell-derived low-dose influenza A H7 virus-like particle preparation protects mice against H7N9 challenge. Vaccine. 2014;32(3):355–362.
  • Pushko P, Pujanauski LM, Sun X, et al. Recombinant H7 hemagglutinin forms subviral particles that protect mice and ferrets from challenge with H7N9 influenza virus. Vaccine. 2015;33(38):4975–4982.
  • Cao W, Liepkalns JS, Kamal RP, et al. RIG-I ligand enhances the immunogenicity of recombinant H7HA protein. Cell Immunol. 2016;304-305:55–58.
  • To KK, Zhang AJ, Chan AS, et al. Recombinant influenza A virus hemagglutinin HA2 subunit protects mice against influenza A(H7N9) virus infection. Arch Virol. 2015;160(3):777–786.
  • Song L, Xiong D, Kang X, et al. An avian influenza A (H7N9) virus vaccine candidate based on the fusion protein of hemagglutinin globular head and Salmonella typhimurium flagellin. BMC Biotechnol. 2015;15:79.
  • Song L, Xiong D, Hu M, et al. Immunopotentiation of different adjuvants on humoral and cellular immune responses induced by HA1-2 subunit vaccines of H7N9 influenza in mice. PLoS ONE2016;11(3):e0150678.
  • Wodal W, Schwendinger MG, Savidis-Dacho H, et al. Immunogenicity and protective efficacy of a Vero cell culture-derived whole-virus H7N9 vaccine in mice and guinea pigs. PLoS ONE. 2015;10(2):e0113963.
  • Chu DH, Sakoda Y, Nishi T, et al. Potency of an inactivated influenza vaccine prepared from A/duck/Mongolia/119/2008 (H7N9) against the challenge with A/Anhui/1/2013 (H7N9). Vaccine. 2014;32(28):3473–3479.
  • Seo SH, Kim HS. Inactivated antigen of the H7N9 influenza virus protects mice from its lethal infection. Viral Immunol. 2016;29(4):235–243.
  • Wong SS, Jeevan T, Kercher L, et al. A single dose of whole inactivated H7N9 influenza vaccine confers protection from severe disease but not infection in ferrets. Vaccine. 2014;32(35):4571–4577.
  • Pan W, Han L, Dong Z, et al. Induction of neutralizing antibodies to influenza A virus H7N9 by inactivated whole virus in mice and nonhuman primates. Antiviral Res. 2014;107:1–5.
  • Chia MY, Hu AY, Tseng YF, et al. Evaluation of MDCK cell-derived influenza H7N9 vaccine candidates in ferrets. PLoS ONE. 2015;10(3):e0120793.
  • Wong SS, Kaplan B, Zanin M, et al. Impact of adjuvants on the immunogenicity and efficacy of split-virion H7N9 vaccine in ferrets. J Infect Dis. 2015;212(4):542–551.
  • Duan Y, Gu H, Chen R, et al. Response of mice and ferrets to a monovalent influenza A (H7N9) split vaccine. PLoS ONE. 2014;9(6):e99322.
  • Ou H, Yao H, Yao W, et al. Analysis of the immunogenicity and bioactivities of a split influenza A/H7N9 vaccine mixed with MF59 adjuvant in BALB/c mice. Vaccine. 2016;34(20):2362–2370.
  • Wu CY, Chang CY, Ma HH, et al. Squalene-adjuvanted H7N9 virus vaccine induces robust humoral immune response against H7N9 and H7N7 viruses. Vaccine. 2014;32(35):4485–4494.
  • Chen Z, Baz M, Lu J, et al. Development of a high-yield live attenuated H7N9 influenza virus vaccine that provides protection against homologous and heterologous H7 wild-type viruses in ferrets. J Virol. 2014;88(12):7016–7023.
  • Yang X, Zhao J, Wang C, et al. Immunization with a live attenuated H7N9 influenza vaccine protects mice against lethal challenge. PLoS ONE. 2015;10(4):e0123659.
  • Kong H, Zhang Q, Gu C, et al. A live attenuated vaccine prevents replication and transmission of H7N9 virus in mammals. Sci Rep. 2015;5:11233.
  • De Jonge J, Isakova-Sivak I, van Dijken H, et al. H7N9 live attenuated influenza vaccine is highly immunogenic, prevents virus replication, and protects against severe bronchopneumonia in ferrets. Mol Ther. 2016;24(5):991–1002.
  • Isakova-Sivak I, Korenkov D, Smolonogina T, et al. Comparative studies of infectivity, immunogenicity and cross-protective efficacy of live attenuated influenza vaccines containing nucleoprotein from cold-adapted or wild-type influenza virus in a mouse model. Virology. 2017;500:209–217.
  • Kreijtz JH, Wiersma LC, De Gruyter HL, et al. A single immunization with modified vaccinia virus Ankara-based influenza virus H7 vaccine affords protection in the influenza A(H7N9) pneumonia ferret model. J Infect Dis. 2015;211(5):791–800.
  • Li Z, Gabbard JD, Johnson S, et al. Efficacy of a parainfluenza virus 5 (PIV5)-based H7N9 vaccine in mice and guinea pigs: antibody titer towards HA was not a good indicator for protection. PLoS ONE. 2015;10(3):e0120355.
  • Cao W, Liepkalns JS, Hassan AO, et al. A highly immunogenic vaccine against A/H7N9 influenza virus. Vaccine. 2016;34(6):744–749.
  • Wongthida P, Jengarn J, Narkpuk J, et al. In vitro and in vivo attenuation of vesicular stomatitis virus (VSV) by phosphoprotein deletion. PLoS ONE. 2016;11(6):e0157287.
  • Liu Q, Mena I, Ma J, et al. Newcastle disease virus-vectored H7 and H5 live vaccines protect chickens from challenge with H7N9 or H5N1 avian influenza viruses. J Virol. 2015;89(14):7401–7408.
  • Fries LF, Smith GE, Glenn GM. A recombinant viruslike particle influenza A (H7N9) vaccine. N Engl J Med. 2013;369(26):2564–2566.
  • Novavax’ H7N9 avian influenza VLP vaccine positive in Phase 1/2. Hum Vaccin Immunother. 2014;10(11):3103–3104.
  • Bart SA, Hohenboken M, Della Cioppa G, et al. A cell culture-derived MF59-adjuvanted pandemic A/H7N9 vaccine is immunogenic in adults. Sci Transl Med. 2014;6(234):234ra255.
  • Mulligan MJ, Bernstein DI, Winokur P, et al. Serological responses to an avian influenza A/H7N9 vaccine mixed at the point-of-use with MF59 adjuvant: a randomized clinical trial. JAMA. 2014;312(14):1409–1419.
  • Jackson LA, Campbell JD, Frey SE, et al. Effect of varying doses of a monovalent H7N9 influenza vaccine with and without AS03 and MF59 adjuvants on immune response: a randomized clinical trial. JAMA. 2015;314(3):237–246.
  • Madan A, Segall N, Ferguson M, et al. Immunogenicity and safety of an AS03-adjuvanted H7N9 pandemic influenza vaccine in a randomized trial in healthy adults. J Infect Dis. 2016;214(11):1717–1727.
  • Rudenko L, Isakova-Sivak I, Naykhin A, et al. H7N9 live attenuated influenza vaccine in healthy adults: a randomised, double-blind, placebo-controlled, phase 1 trial. Lancet Infect Dis. 2016;16(3):303–310.
  • Sobhanie M, Matsuoka Y, Jegaskanda S, et al. Evaluation of the safety and immunogenicity of a candidate pandemic live attenuated influenza vaccine (pLAIV) against influenza A(H7N9). J Infect Dis. 2016;213(6):922–929.
  • Magini D, Giovani C, Mangiavacchi S, et al. Self-amplifying mRNA vaccines expressing multiple conserved influenza antigens confer protection against homologous and heterosubtypic viral challenge. PLoS ONE. 2016;11(8):e0161193.
  • Kang SM, Pushko P, Bright RA, et al. Influenza virus-like particles as pandemic vaccines. Curr Top Microbiol Immunol. 2009;333:269–289.
  • Li X, Pushko P, Tretyakova I. Recombinant hemagglutinin and virus-like particle vaccines for H7N9 influenza virus. J Vaccines Vaccin. 2015;6(3).
  • Pushko P, Pumpens P, Grens E. Development of virus-like particle technology from small highly symmetric to large complex virus-like particle structures. Intervirology. 2013;56(3):141–165.
  • Bright RA, Carter DM, Daniluk S, et al. Influenza virus-like particles elicit broader immune responses than whole virion inactivated influenza virus or recombinant hemagglutinin. Vaccine. 2007;25(19):3871–3878.
  • Hahn T, Courbron D, Hamer M, et al. Rapid manufacture and release of a GMP batch of avian influenza a(H7N9) virus-like particle vaccine made using recombinant baculovirus-Sf9 insect cell culture technology. Bioprocessing J. 2013;1(1):1–10.
  • Hu CJ, Chien CY, Liu MT, et al. Multi-antigen avian influenza a (H7N9) virus-like particles: particulate characterizations and immunogenicity evaluation in murine and avian models. BMC Biotechnol. 2017;17(1):2.
  • Pushko P, Tretyakova I, Hidajat R, et al. Virus-like particles displaying H5, H7, H9 hemagglutinins and N1 neuraminidase elicit protective immunity to heterologous avian influenza viruses in chickens. Virology. 2017;501:176–182.
  • Tretyakova I, Hidajat R, Hamilton G, et al. Preparation of quadri-subtype influenza virus-like particles using bovine immunodeficiency virus gag protein. Virology. 2016;487:163–171.
  • FDA Approves Flublok - New Seasonal Influenza Vaccine Made Using Novel Technology. 2013 Jan 16. [cited 2017 Fab 7]. Available from: https://www.drugs.com/newdrugs/fda-approves-flublok-new-seasonal-influenza-vaccine-made-using-novel-technology-3642.html
  • FDA Approves Flublok Quadrivalent Influenza Vaccine. 2016 Oct 11. [cited 2017 Feb 7]. Available from: https://www.drugs.com/newdrugs/fda-approves-flublok-quadrivalent-influenza-vaccine-4441.html
  • Buckland B, Boulanger R, Fino M, et al. Technology transfer and scale-up of the Flublok recombinant hemagglutinin (HA) influenza vaccine manufacturing process. Vaccine. 2014;32(42):5496–5502.
  • Cox MM, Patriarca PA, FluBlok TJ. a recombinant hemagglutinin influenza vaccine. Influenza Other Respir Viruses. 2008;2(6):211–219.
  • Barria MI, Garrido JL, Stein C, et al. Localized mucosal response to intranasal live attenuated influenza vaccine in adults. J Infect Dis. 2013;207(1):115–124.
  • Petukhova G, Naikhin A, Chirkova T, et al. Comparative studies of local antibody and cellular immune responses to influenza infection and vaccination with live attenuated reassortant influenza vaccine (LAIV) utilizing a mouse nasal-associated lymphoid tissue (NALT) separation method. Vaccine. 2009;27(19):2580–2587.
  • Rudenko LG, Slepushkin AN, Monto AS, et al. Efficacy of live attenuated and inactivated influenza vaccines in schoolchildren and their unvaccinated contacts in Novgorod, Russia. J Infect Dis. 1993;168(4):881–887.
  • Powell TJ, Strutt T, Reome J, et al. Priming with cold-adapted influenza A does not prevent infection but elicits long-lived protection against supralethal challenge with heterosubtypic virus. J Immunology. 2007;178(2):1030–1038.
  • Tamura S, Tanimoto T, Kurata T. Mechanisms of broad cross-protection provided by influenza virus infection and their application to vaccines. Jpn J Infect Dis. 2005;58(4):195–207.
  • Chirkova TV, Naykhin AN, Petukhova GD, et al. Memory T-cell immune response in healthy young adults vaccinated with live attenuated influenza A (H5N2) vaccine. Clin Vaccine Immunol. 2011;18(10):1710–1718.
  • He XS, Holmes TH, Zhang C, et al. Cellular immune responses in children and adults receiving inactivated or live attenuated influenza vaccines. J Virol. 2006;80(23):11756–11766.
  • Hoft DF, Babusis E, Worku S, et al. Live and inactivated influenza vaccines induce similar humoral responses, but only live vaccines induce diverse T-cell responses in young children. J Infect Dis. 2011;204(6):845–853.
  • Rekstin AR, Kiseleva IV, Klimov AI, et al. Interferon and other proinflamatory cytokine responses in vitro following infection with wild-type and cold-adapted reassortant influenza viruses. Vaccine. 2006;24(44–46):6581–6584.
  • Isakova-Sivak I, Safety RL. immunogenicity and infectivity of new live attenuated influenza vaccines. Expert Rev Vaccines. 2015;14(10):1313–1329.
  • Shcherbik S, Pearce N, Balish A, et al. Generation and characterization of live attenuated influenza A(H7N9) candidate vaccine virus based on Russian donor of attenuation. PLoS ONE. 2015;10(9):e0138951.
  • Isakova-Sivak I, Korenkov D, Rudenko L. Reassortant viruses for influenza vaccines: is it time to reconsider their genome structures? Expert Rev Vaccines. 2016;15(5):565–567.
  • Lambe T. Novel viral vectored vaccines for the prevention of influenza. Mol Medicine. 2012;18:1153–1160.
  • Chung KY, Coyle EM, Jani D, et al. ISCOMATRIX adjuvant promotes epitope spreading and antibody affinity maturation of influenza A H7N9 virus like particle vaccine that correlate with virus neutralization in humans. Vaccine. 2015;33(32):3953–3962.
  • Rudenko L, Isakova-Sivak I. Pandemic preparedness with live attenuated influenza vaccines based on A/Leningrad/134/17/57 master donor virus. Expert Rev Vaccines. 2015;14(3):395–412. .
  • Coelingh KL, Luke CJ, Jin H, et al. Development of live attenuated influenza vaccines against pandemic influenza strains. Expert Rev Vaccines. 2014;13(7):855–871 .
  • Talaat KR, Luke CJ, Khurana S, et al. A live attenuated influenza A(H5N1) vaccine induces long-term immunity in the absence of a primary antibody response. J Infect Dis. 2014;209(12):1860–1869.
  • Babu TM, Levine M, Fitzgerald T, et al. Live attenuated H7N7 influenza vaccine primes for a vigorous antibody response to inactivated H7N7 influenza vaccine. Vaccine. 2014;32(50):6798–6804.
  • Rudenko L, Naykhin A, Donina S, et al. Assessment of immune responses to H5N1 inactivated influenza vaccine among individuals previously primed with H5N2 live attenuated influenza vaccine. Hum Vaccin Immunother. 2015;11(12):2839–2848.
  • Wareing MD, Watson JM, Brooks MJ, et al. Immunogenic and isotype-specific responses to Russian and US cold-adapted influenza a vaccine donor strains A/Leningrad/134/17/57, A/Leningrad/134/47/57, and A/Ann Arbor/6/60 (H2N2) in mice. J Med Virol. 2001;65(1):171–177.
  • Nicholson KG, Tyrrell DA, Oxford JS, et al. Infectivity and reactogenicity of reassortant cold-adapted influenza A/Korea/1/82 vaccines obtained from the USA and USSR. Bull World Health Organ. 1987;65(3):295–301.
  • Gellin BG, Qadri F. Preparing for the unpredictable: the continuing need for pandemic influenza preparedness. Vaccine. 2016;34(45):5391–5392.
  • World Health Organization. Global pandemic influenza action plan to increase vaccine supply. 2006. [cited 2017 Feb 8]. Available from: http://apps.who.int/iris/bitstream/10665/69388/1/WHO_ IVB_06.13_eng.pdf
  • Grohmann G, Francis DP, Sokhey J, et al. Challenges and successes for the grantees and the technical advisory group of WHO’s influenza vaccine technology transfer initiative. Vaccine. 2016;34(45):5420–5424.
  • Rudenko L, Yeolekar L, Kiseleva I, et al. Development and approval of live attenuated influenza vaccines based on Russian master donor viruses: process challenges and success stories. Vaccine. 2016;34(45):5436–5441.
  • Suzuki Y, Odagiri T, Tashiro M, et al. Development of an influenza A master virus for generating high-growth reassortants for A/Anhui/1/2013(H7N9) vaccine production in qualified MDCK cells. PLoS ONE. 2016;11(7):e0160040.
  • Mostafa A, Kanrai P, Ziebuhr J, et al. The PB1 segment of an influenza A virus H1N1 2009pdm isolate enhances the replication efficiency of specific influenza vaccine strains in cell culture and embryonated eggs. J Gen Virol. 2016;97(3):620–631.
  • Ping J, Lopes TJ, Nidom CA, et al. Development of high-yield influenza A virus vaccine viruses. Nat Commun. 2015;6:8148.
  • Ridenour C, Johnson A, Winne E, et al. Development of influenza A(H7N9) candidate vaccine viruses with improved hemagglutinin antigen yield in eggs. Influenza Other Respir Viruses. 2015;9(5):263–270.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.