2,099
Views
9
CrossRef citations to date
0
Altmetric
Review

Accelerating tuberculosis vaccine trials with diagnostic and prognostic biomarkers

, &
Pages 845-853 | Received 27 Feb 2017, Accepted 08 Jun 2017, Published online: 19 Jun 2017

References

  • WHO. Global tuberculosis report 2015. Geneva, Switzerland: World Health Organization; 2016 .
  • WHO. End TB strategy. Geneva, Switzerland: World Health Organization; 2015.
  • Procop GW. Laboratory diagnosis and susceptibility testing for Mycobacterium tuberculosis. Microbiol Spectr. 2016;4:6.
  • Zumla A, Otchere ID, Mensah GI, et al. Learning from epidemiological, clinical, and immunological studies on Mycobacterium africanum for improving current understanding of host-pathogen interactions, and for the development and evaluation of diagnostics, host-directed therapies, and vaccines for tuberculosis. Int J Infect Dis. 2017;56:126–129.
  • Pai M, Behr MA, Dowdy D, et al. Tuberculosis. Nat Rev Dis Primers. 2016;2:16076.
  • Schorey JS, Schlesinger LS. Innate immune responses to tuberculosis. Microbiol Spectr. 2016;4:6.
  • Ulrichs T, Kaufmann SH. New insights into the function of granulomas in human tuberculosis. J Pathol. 2006;208(2):261–269.
  • Ottenhoff TH, Kaufmann SH. Vaccines against tuberculosis: where are we and where do we need to go? Plos Pathog. 2012;8(5):e1002607.
  • Barry CE III, Boshoff HI, Dartois V, et al. The spectrum of latent tuberculosis: rethinking the biology and intervention strategies. Nat Rev Microbiol. 2009;7(12):845–855.
  • Lenaerts A, Barry CE III, Dartois V. Heterogeneity in tuberculosis pathology, microenvironments and therapeutic responses. Immunol Rev. 2015;264(1):288–307.
  • Lin PL, Ford CB, Coleman MT, et al. Sterilization of granulomas is common in active and latent tuberculosis despite within-host variability in bacterial killing. Nat Med. 2014;20(1):75–79.
  • Mayer-Barber KD, Barber DL. Innate and adaptive cellular immune responses to Mycobacterium tuberculosis infection. Cold Spring Harb Perspect Med. 2015;5:12.
  • Cliff JM, Kaufmann SH, McShane H, et al. The human immune response to tuberculosis and its treatment: a view from the blood. Immunol Rev. 2015;264(1):88–102.
  • Wolf AJ, Desvignes L, Linas B, et al. Initiation of the adaptive immune response to Mycobacterium tuberculosis depends on antigen production in the local lymph node, not the lungs. J Exp Med. 2008;205(1):105–115.
  • Gengenbacher M, Kaufmann SH. Mycobacterium tuberculosis: success through dormancy. FEMS Microbiol Rev. 2012;36(3):514–532.
  • Maertzdorf J, McEwen G, Weiner J III, et al. Concise gene signature for point-of-care classification of tuberculosis. EMBO Mol Med. 2016;8(2):86–95.
  • Zak DE, Penn-Nicholson A, Scriba TJ, et al. A blood RNA signature for tuberculosis disease risk: a prospective cohort study. Lancet. 2016;387(10035):2312–2322.
  • Maertzdorf J, Weiner J III, Kaufmann SH. Enabling biomarkers for tuberculosis control. Int J Tuberc Lung Dis. 2012;16(9):1140–1148.
  • Weiner J 3rd, Parida SK, Maertzdorf J, et al. Biomarkers of inflammation, immunosuppression and stress with active disease are revealed by metabolomic profiling of tuberculosis patients. Plos One. 2012;7(7):e40221.
  • Walzl G, Ronacher K, Hanekom W, et al. Immunological biomarkers of tuberculosis. Nat Rev Immunol. 2011;11(5):343–354.
  • Goletti D, Petruccioli E, Joosten SA, et al. Tuberculosis biomarkers: from diagnosis to protection. Infect Dis Rep. 2016;8(2):6568.
  • Petruccioli E, Scriba TJ, Petrone L, et al. Correlates of tuberculosis risk: predictive biomarkers for progression to active tuberculosis. Eur Respir J. 2016;48(6):1751–1763.
  • Fletcher HA, Dockrell HM. Human biomarkers: can they help us to develop a new tuberculosis vaccine? Future Microbiol. 2016;11:781–787.
  • Tameris MD, Hatherill M, Landry BS, et al. Safety and efficacy of MVA85A, a new tuberculosis vaccine, in infants previously vaccinated with BCG: a randomised, placebo-controlled phase 2b trial. Lancet. 2013;381(9871):1021–1028.
  • Ndiaye BP, Thienemann F, Ota M, et al. Safety, immunogenicity, and efficacy of the candidate tuberculosis vaccine MVA85A in healthy adults infected with HIV-1: a randomised, placebo-controlled, phase 2 trial. Lancet Respir Med. 2015;3(3):190–200.
  • Hatherill M, Tait D, McShane H. Clinical testing of tuberculosis vaccine candidates. Microbiol Spectr. 2016;4:5.
  • Kaufmann SH, Weiner J, Von Reyn CF. Novel approaches to tuberculosis vaccine development. Int J Infect Dis. 2017;56:263–267.
  • Hawn TR, Day TA, Scriba TJ, et al. Tuberculosis vaccines and prevention of infection. Microbiol Mol Biol Rev. 2014;78(4):650–671.
  • Rueckert C, Guzman CA. Vaccines: from empirical development to rational design. Plos Pathog. 2012;8(11):e1003001.
  • Lewis DJ, Lythgoe MP. Application of “systems vaccinology” to evaluate inflammation and reactogenicity of adjuvanted preventative vaccines. J Immunol Res. 2015;2015:909406.
  • Nakaya HI, Clutterbuck E, Kazmin D, et al. Systems biology of immunity to MF59-adjuvanted versus nonadjuvanted trivalent seasonal influenza vaccines in early childhood. Proc Natl Acad Sci U S A. 2016;113(7):1853–1858.
  • Banchereau R, Baldwin N, Cepika AM, et al. Transcriptional specialization of human dendritic cell subsets in response to microbial vaccines. Nat Commun. 2014;5:5283.
  • Olafsdottir TA, Lindqvist M, Nookaew I, et al. Comparative systems analyses reveal molecular signatures of clinically tested vaccine adjuvants. Sci Rep. 2016;6:39097.
  • Richert L, Lhomme E, Fagard C, et al. Recent developments in clinical trial designs for HIV vaccine research. Hum Vaccin Immunother. 2015;11(4):1022–1029.
  • Pierce BG, Keck ZY, Foung SK. Viral evasion and challenges of hepatitis C virus vaccine development. Curr Opin Virol. 2016;20:55–63.
  • Trucchi C, Orsi A, Alicino C, et al. State of the art, unresolved issues, and future research directions in the fight against hepatitis c virus: perspectives for screening, diagnostics of resistances, and immunization. J Immunol Res. 2016;2016:1412840.
  • Ouattara A, Barry AE, Dutta S, et al. Designing malaria vaccines to circumvent antigen variability. Vaccine. 2015;33(52):7506–7512.
  • Stanisic DI, Barry AE, Good MF. Escaping the immune system: how the malaria parasite makes vaccine development a challenge. Trends Parasitol. 2013;29(12):612–622.
  • Ottenhoff TH, Ellner JJ, Kaufmann SH. Ten challenges for TB biomarkers. Tuberculosis(Edinb). 2012;92(Suppl 1):S17–S20.
  • Dockrell HM. Towards new TB vaccines: what are the challenges? Pathog Dis. 2016;74(4):ftw016.
  • Kaufmann SH, Evans TG, Hanekom WA. Tuberculosis vaccines: time for a global strategy. Sci Transl Med. 2015;7(276):276–278.
  • Weiner J III, Kaufmann SH. Recent advances towards tuberculosis control: vaccines and biomarkers. J Intern Med. 2014;275(5):467–480.
  • Abubakar I, Pimpin L, Ariti C, et al. Systematic review and meta-analysis of the current evidence on the duration of protection by bacillus Calmette-Guerin vaccination against tuberculosis. Health Technol Assess. 2013;17(37):1–vi.
  • Fletcher HA, Snowden MA, Landry B, et al. T-cell activation is an immune correlate of risk in BCG vaccinated infants. Nat Commun. 2016;7:11290.
  • Fletcher HA, Filali-Mouhim A, Nemes E, et al. Human newborn bacillus Calmette–Guerin vaccination and risk of tuberculosis disease: a case-control study. BMC Med. 2016;14:76.
  • Hur YG, Gorak-Stolinska P, Lalor MK, et al. Factors affecting immunogenicity of BCG in infants, a study in Malawi, The Gambia and the UK. BMC Infect Dis. 2014;14:184.
  • Mawa PA, Webb EL, Filali-Mouhim A, et al. Maternal BCG scar is associated with increased infant proinflammatory immune responses. Vaccine. 2017;35(2):273–282.
  • Kaufmann SH, Winau F. From bacteriology to immunology: the dualism of specificity. Nat Immunol. 2005;6(11):1063–1066.
  • Pai M, Denkinger CM, Kik SV, et al. Gamma interferon release assays for detection of Mycobacterium tuberculosis infection. Clin Microbiol Rev. 2014;27(1):3–20.
  • Weiner J, Kaufmann SH. High-throughput and computational approaches for diagnostic and prognostic host tuberculosis biomarkers. Int J Infect Dis. 2017;56:258–262.
  • Esterhuyse MM, Kaufmann SH. Diagnostic biomarkers are hidden in the infected host’s epigenome. Expert Rev Mol Diagn. 2013;13(6):625–637.
  • Esterhuyse MM, Weiner J 3rd, Caron E, et al. Epigenetics and proteomics join transcriptomics in the quest for tuberculosis biomarkers. MBio. 2015;6(5):e01187–01115.
  • Sreeramareddy CT, Panduru KV, Menten J, et al. Time delays in diagnosis of pulmonary tuberculosis: a systematic review of literature. BMC Infect Dis. 2009;9:91.
  • Berry MP, Graham CM, McNab FW, et al. An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature. 2010;466(7309):973–977.
  • Jacobsen M, Repsilber D, Kleinsteuber K, et al. Suppressor of cytokine signaling-3 is affected in T-cells from tuberculosis TB patients. Clin Microbiol Infect. 2011;17(9):1323–1331.
  • Maertzdorf J, Ota M, Repsilber D, et al. Functional correlations of pathogenesis-driven gene expression signatures in tuberculosis. Plos One. 2011;6(10):e26938.
  • Joosten SA, Fletcher HA, Ottenhoff TH. A helicopter perspective on TB biomarkers: pathway and process based analysis of gene expression data provides new insight into TB pathogenesis. Plos One. 2013;8(9):e73230.
  • Anderson ST, Kaforou M, Brent AJ, et al. Diagnosis of childhood tuberculosis and host RNA expression in Africa. N Engl J Med. 2014;370(18):1712–1723.
  • Kaforou M, Wright VJ, Oni T, et al. Detection of tuberculosis in HIV-infected and -uninfected African adults using whole blood RNA expression signatures: a case-control study. Plos Med. 2013;10(10):e1001538.
  • Dawany N, Showe LC, Kossenkov AV, et al. Identification of a 251 gene expression signature that can accurately detect M. tuberculosis in patients with and without HIV co-infection. Plos One. 2014;9(2):e89925.
  • Maertzdorf J, Weiner J 3rd, Mollenkopf HJ, et al. Common patterns and disease-related signatures in tuberculosis and sarcoidosis. Proc Natl Acad Sci U S A. 2012;109(20):7853–7858.
  • Bloom CI, Graham CM, Berry MP, et al. Transcriptional blood signatures distinguish pulmonary tuberculosis, pulmonary sarcoidosis, pneumonias and lung cancers. Plos One. 2013;8(8):e70630.
  • Sweeney TE, Braviak L, Tato CM, et al. Genome-wide expression for diagnosis of pulmonary tuberculosis: a multicohort analysis. Lancet Respir Med. 2016;4(3):213–224.
  • Roe JK, Thomas N, Gil E, et al. Blood transcriptomic diagnosis of pulmonary and extrapulmonary tuberculosis. JCI Insight. 2016;1(16):e87238.
  • Naranbhai V, Fletcher HA, Tanner R, et al. Distinct transcriptional and anti-mycobacterial profiles of peripheral blood monocytes dependent on the ratio of monocytes: lymphocytes. Ebio Med. 2015;2(11):1619–1626.
  • Naranbhai V, Hill AV, Abdool Karim SS, et al. Ratio of monocytes to lymphocytes in peripheral blood identifies adults at risk of incident tuberculosis among HIV-infected adults initiating antiretroviral therapy. J Infect Dis. 2014;209(4):500–509.
  • Naranbhai V, Kim S, Fletcher H, et al. The association between the ratio of monocytes: lymphocytes at age 3 months and risk of tuberculosis (TB) in the first two years of life. BMC Med. 2014;12:120.
  • Hogrefe WR. Biomarkers and assessment of vaccine responses. Biomarkers. 2005;10(Suppl 1):S50–S57.
  • Van Els C, Mjaaland S, Naess L, et al. Fast vaccine design and development based on correlates of protection (COPs). Humv Accin Immunother. 2014;10(7):1935–1948.
  • Lee Y, Kim YJ, Jung YJ, et al. Systems biology from virus to humans. J Anal Sci Technol. 2015;6(1):3.
  • Li S, Rouphael N, Duraisingham S, et al. Molecular signatures of antibody responses derived from a systems biology study of five human vaccines. Nat Immunol. 2014;15(2):195–204.
  • Nakaya HI, Wrammert J, Lee EK, et al. Systems biology of vaccination for seasonal influenza in humans. Nat Immunol. 2011;12(8):786–795.
  • Bucasas KL, Franco LM, Shaw CA, et al. Early patterns of gene expression correlate with the humoral immune response to influenza vaccination in humans. J Infect Dis. 2011;203(7):921–929.
  • Querec TD, Akondy RS, Lee EK, et al. Systems biology approach predicts immunogenicity of the yellow fever vaccine in humans. Nat Immunol. 2009;10(1):116–125.
  • Vratskikh O, Stiasny K, Zlatkovic J, et al. Dissection of antibody specificities induced by yellow fever vaccination. Plos Pathog. 2013;9(6):e1003458.
  • Muyanja E, Ssemaganda A, Ngauv P, et al. Immune activation alters cellular and humoral responses to yellow fever 17D vaccine. J Clin Invest. 2014;124(7):3147–3158.
  • Bassi MR, Kongsgaard M, Steffensen MA, et al. CD8+ T cells complement antibodies in protecting against yellow fever virus. J Immunol. 2015;194(3):1141–1153.
  • Vahey MT, Wang Z, Kester KE, et al. Expression of genes associated with immunoproteasome processing of major histocompatibility complex peptides is indicative of protection with adjuvanted RTS,S malaria vaccine. J Infect Dis. 2010;201(4):580–589.
  • Kazmin D, Nakaya HI, Lee EK, et al. Systems analysis of protective immune responses to RTS,S malaria vaccination in humans. Proc Natl Acad Sci U S A. 2017;114(9):2425–2430.
  • Dunachie S, Hill AV, Fletcher HA. Profiling the host response to malaria vaccination and malaria challenge. Vaccine. 2015;33(40):5316–5320.
  • Gunther VJ, Putnak R, Eckels KH, et al. A human challenge model for dengue infection reveals a possible protective role for sustained interferon gamma levels during the acute phase of illness. Vaccine. 2011;29(22):3895–3904.
  • Killingley B, Enstone J, Booy R, et al. Potential role of human challenge studies for investigation of influenza transmission. Lancet Infect Dis. 2011;11(11):879–886.
  • McArthur MA, Fresnay S, Magder LS, et al. Activation of Salmonella typhi-specific regulatory T cells in typhoid disease in a wild-type S. typhi challenge model. Plos Pathog. 2015;11(5):e1004914.
  • Memoli MJ, Czajkowski L, Reed S, et al. Validation of the wild-type influenza A human challenge model H1N1pdMIST: an A(H1N1)pdm09 dose-finding investigational new drug study. Clin Infect Dis. 2015;60(5):693–702.
  • Shirley DA, McArthur MA. The utility of human challenge studies in vaccine development: lessons learned from cholera. Vaccine(Auckl). 2011;2011(1):3–13.
  • Spring M, Polhemus M, Ockenhouse C. Controlled human malaria infection. J Infect Dis. 2014;209(Suppl 2):S40–S45.
  • Sauerwein RW, Roestenberg M, Moorthy VS. Experimental human challenge infections can accelerate clinical malaria vaccine development. Nat Rev Immunol. 2011;11(1):57–64.
  • Dunachie S, Berthoud T, Hill AV, et al. Transcriptional changes induced by candidate malaria vaccines and correlation with protection against malaria in a human challenge model. Vaccine. 2015;33(40):5321–5331.
  • Davenport EE, Antrobus RD, Lillie PJ, et al. Transcriptomic profiling facilitates classification of response to influenza challenge. J Mol Med(Berl). 2015;93(1):105–114.
  • Ottenhoff TH, Dass RH, Yang N, et al. Genome-wide expression profiling identifies type 1 interferon response pathways in active tuberculosis. Plos One. 2012;7(9):e45839.
  • Maertzdorf J, Kaufmann SH, Weiner J 3rd. Toward a unified biosignature for tuberculosis. Cold Spring Harb Perspect Med. 2014;5(1):a018531.
  • Ellis RD, Hatherill M, Tait D, et al. Innovative clinical trial designs to rationalize TB vaccine development. Tuberculosis(Edinb). 2015;95(3):352–357.
  • Garcia-Basteiro AL, Ruhwald M, Lange C. Design of tuberculosis vaccine trials under financial constraints. Expert Rev Vaccines. 2016;15(7):799–801.
  • McShane H, Williams A. A review of preclinical animal models utilised for TB vaccine evaluation in the context of recent human efficacy data. Tuberculosis(Edinb). 2014;94(2):105–110.
  • Smith CM, Proulx MK, Olive AJ, et al. Tuberculosis susceptibility and vaccine protection are independently controlled by host genotype. MBio. 2016;7(5):e01516–16.
  • O’Shea MK, McShane H. A review of clinical models for the evaluation of human TB vaccines. Hum Vaccin Immunother. 2016;12(5):1177–1187.
  • Tanner R, O’Shea MK, Fletcher HA, et al. In vitro mycobacterial growth inhibition assays: a tool for the assessment of protective immunity and evaluation of tuberculosis vaccine efficacy. Vaccine. 2016;34(39):4656–4665.
  • Marsay L, Matsumiya M, Tanner R, et al. Mycobacterial growth inhibition in murine splenocytes as a surrogate for protection against Mycobacterium tuberculosis (M. tb). Tuberculosis(Edinb). 2013;93(5):551–557.
  • Hokey DA, Vaccines: TB. The (human) challenge ahead. Mycobact Dis. 2014;4(4):e128.
  • Minassian AM, Satti I, Poulton ID, et al. A human challenge model for Mycobacterium tuberculosis using Mycobacterium bovis bacille Calmette-Guerin. J Infect Dis. 2012;205(7):1035–1042.
  • Harris SA, Meyer J, Satti I, et al. Evaluation of a human BCG challenge model to assess antimycobacterial immunity induced by BCG and a candidate tuberculosis vaccine, MVA85A, alone and in combination. J Infect Dis. 2014;209(8):1259–1268.
  • Kaufmann SH, Fortune S, Pepponi I, et al. TB biomarkers, TB correlates and human challenge models: new tools for improving assessment of new TB vaccines. Tuberculosis(Edinb). 2016;99(Suppl 1):S8–S11.
  • Miller FG, Grady C. The ethical challenge of infection-inducing challenge experiments. Clin Infect Dis. 2001;33(7):1028–1033.
  • Fine PE. Variation in protection by BCG: implications of and for heterologous immunity. Lancet. 1995;346(8986):1339–1345.
  • Hagan T, Nakaya HI, Subramaniam S, et al. Systems vaccinology: enabling rational vaccine design with systems biological approaches. Vaccine. 2015;33(40):5294–5301.
  • Bernstein A, Pulendran B, Rappuoli R. Systems vaccinomics: the road ahead for vaccinology. Omics. 2011;15(9):529–531.
  • Montoya J, Solon JA, Cunanan SR, et al. A randomized, controlled dose-finding phase II study of the M72/AS01 candidate tuberculosis vaccine in healthy PPD-positive adults. J Clin Immunol. 2013;33(8):1360–1375.