1,344
Views
52
CrossRef citations to date
0
Altmetric
Review

Calcium phosphate nanoparticles as a new generation vaccine adjuvant

, , , , &
Pages 895-906 | Received 21 Dec 2016, Accepted 12 Jul 2017, Published online: 25 Jul 2017

References

  • Chan EH, Brewer TF, Madoff LC, et al. Global capacity for emerging infectious disease detection. P Natl Acad Sci USA. 2010;107(50):21701–21706.
  • Taki A, Smooker P. Small wonders—the use of nanoparticles for delivering antigen. Vaccines. 2015;3(3):638–661.
  • Maughan CN, Preston SG, Williams GR. Particulate inorganic adjuvants: recent developments and future outlook. J Pharm Pharmacol. 2015;67(3):426–449.
  • Doherty M, Buchy P, Standaert B, et al. Vaccine impact: benefits for human health. Vaccine. 2016;34(52):6707–6714.
  • Rappuoli R, Mandl CW, Black S, et al. Vaccines for the twenty-first century society. Nat Rev Immunol. 2011;11(12):865–872.
  • Hamborsky J, Kroger A. Epidemiology and prevention of vaccine-preventable diseases. E-Book: The Pink Book. Public Health Foundation, 2015:231–246.
  • Amanna IJ, Slifka MK. Contributions of humoral and cellular immunity to vaccine-induced protection in humans. Virology. 2011;411(2):206–215.
  • Pasquale AD, Preiss S, Silva FTD, et al. Vaccine adjuvants: from 1920 to 2015 and beyond. Vaccines. 2015;3(2):320–343.
  • Schijns VE, Lavelle EC. Trends in vaccine adjuvants. Expert Rev Vaccines. 2011;10(4):539–550.
  • Gupta A, Das S, Schanen B, et al. Adjuvants in micro- to nanoscale: current state and future direction. Wires Nanomed Nanobi. 2015;8(1):61–84.
  • Garçon N, Leroux Roels G, Cheng WF. Vaccine adjuvants. Perspect Vaccinology. 2011;1(1):89–113.
  • Gutjahr A, Tiraby G, Perouzel E, et al. Triggering intracellular receptors for vaccine adjuvantation. Trends Immunol. 2016;37(9):573–587.
  • Glenny AT, Pope CG, Hilda W, et al. Immunological notes. XVII-XXIV. J Pathol Bacteriol. 1926;29(1):31–40.
  • Powell BS, Andrianov AK, Fusco PC. Polyionic vaccine adjuvants: another look at aluminum salts and polyelectrolytes. Clin Exp Vaccine Res. 2015;4(1):23–45.
  • Reed SG, Bertholet S, Coler RN, et al. New horizons in adjuvants for vaccine development. Trends Immunol. 2009;30(1):23–32.
  • Zhu YZ, Liu DW, Liu ZY, et al. impact of aluminum exposure on the immune system: a mini review. Environ Toxicol Phar. 2013;35(1):82–87.
  • Chowdhury R. A review on the application of nanotechnology in pharmaceutical science. EWU Institutional Repository. 2015-08-06. Available from: http://dspace.ewubd.edu/handle/123456789/1634
  • Cruz LJ, Rosalia RA, Kleinovink JW, et al. Targeting nanoparticles to CD40, DEC-205 or CD11c molecules on dendritic cells for efficient CD8(+) T cell response: a comparative study. J Control Release. 2014;192(7):209–218.
  • Marrache S, Tundup S, Harn DA, et al. Ex vivo programming of dendritic cells by mitochondria-targeted nanoparticles to produce interferon-gamma for cancer immunotherapy. Acs Nano. 2013;7(8):7392–7402.
  • Park JH, Maltzahn GV, Zhang L, et al. Systematic surface engineering of magnetic nanowoms for in vivo tumor targeting. Small. 2009;5(6):694–700.
  • Gregory AE, Titball R, Williamson D. Vaccine delivery using nanoparticles. Front Cell Infect Mi. 2013;3(1):13–13.
  • Liu Y, Xu Y, Tian Y, et al. Functional nanomaterials can optimize the efficacy of vaccines. Small. 2014;10(22):4505–4520.
  • Smith JD, Morton LD, Ulery BD. Nanoparticles as synthetic vaccines. Curr Opin Biotech. 2015;34:217–224.
  • Sharma S, Verma A, Teja BV, et al. An insight into functionalized calcium based inorganic nanomaterials in biomedicine: trends and transitions. Colloid Surface B. 2015;133:120–139.
  • Epple M, Ganesan K, Heumann R, et al. Application of calcium phosphate nanoparticles in biomedicine. J Mater Chem. 2010;20(1):18–23.
  • Uskoković V, Wu VM. Calcium phosphate as a key material for socially responsible tissue engineering. Materials. 2016;9(6):434.
  • Chu W, Huang Y, Yang C, et al. Calcium phosphate nanoparticles functionalized with alendronate-conjugated polyethylene glycol (PEG) for the treatment of bone metastasis. Int J Pharmaceut. 2017;516(1–2):352–363.
  • Chen F, Zhu YJ, Zhang KH, et al. Europium-doped amorphous calcium phosphate porous nanospheres: preparation and application as luminescent drug carriers. Nanoscale Res Lett. 2011;6(1):67.
  • Jiang D, Premachandra GS, Johnston C, et al. Structure and adsorption properties of commercial calcium phosphate adjuvant. Vaccine. 2004;23(5):693–698.
  • Gupta RK, Siber GR. Adjuvants for human vaccines-current status, problems and future prospects. Vaccine. 1995;13(14):1263–1276.
  • Goto N, Kato H, Maeyama JI, et al. Local tissue irritating effects and adjuvant activities of calcium phosphate and aluminium hydroxide with different physical properties. Vaccine. 1997;15(12):1364–1371.
  • Masson JD, Thibaudon M, Bélec L, et al. Calcium phosphate: a substitute for aluminum adjuvants? Expert Rev Vaccines. 2017;16: 289–299.
  • Goto N, Kato H, Maeyama J, et al. Studies on the toxicities of aluminium hydroxide and calcium phosphate as immunological adjuvants for vaccines. Vaccine. 1993;11(9):914–918.
  • Relyveld EH, Martin R, Raynaud M, et al. Calcium phosphate as adjuvant in vaccinations in man. Ann Inst Pasteur. 1969;116:300–326.
  • Relyveld EH. Preparation and use of calcium phosphate adsorbed vaccines. Dev Biol Stand. 1986;65(65):131–136.
  • Olmedo H, Herrera M, Rojas L, et al. Comparison of the adjuvant activity of aluminum hydroxide and calcium phosphate on the antibody response towards Bothrops asper snake venom. J Immunotoxicol. 2013;11(1):44–49.
  • Dorozhkin SV. A detailed history of calcium orthophosphates from 1770s till 1950. Mat Sci Eng C. 2013;33(6):3085–3110.
  • Dorozhkin SV. Amorphous calcium orthophosphates: nature, chemistry and biomedical applications. Int J Mater Chem. 2012;2(1):19–46.
  • Dorozhkin SV. Calcium orthophosphates(CaPO4): occurrence and properties. Prog Biomater. 2016;5(1):9–70.
  • Jarcho M. Calcium phosphate ceramics as hard tissue prosthetics. Clin Orthop Relat R. 1981;157(157):259–278.
  • Kwong CH, Burns WB, Cheung HS. Solubilization of hydroxyapatite crystals by murine bone cells, macrophages and fibroblasts. Biomaterials. 1989;10(9):579–584.
  • Bondarenko O, Juganson K, Ivask A, et al. Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Arch Toxicol. 2013;87(7):1181–1200.
  • Tang R, Cai Y. Calcium phosphate nanoparticles in biomineralization and biomaterials. J Mater Chem. 2008;18(32):3775–3787.
  • Colby AH, Colson YL, Grinstaff MW. Microscopy and tunable resistive pulse sensing characterization of the swelling of pH-responsive, polymeric expansile nanoparticles. Nanoscale. 2013;5(8):3496–3504.
  • Morgan TT, Muddana HS, Altinoglu EI, et al. Encapsulation of organic molecules in calcium phosphate nanocomposite particles for intracellular imaging and drug delivery. Nano Lett. 2008;8(12):4108–4115.
  • Cai S, Yu X, Xiao Z, et al. Synthesis and sintering of nanocrystalline hydroxyapatite powders by gelatin-based precipitation method. Ceram Int. 2007;33(2):193–196.
  • Wang Z, Tang Z, Qing F, et al. Applications of calcium phosphate nanoparticles in porous hard tissue engineering scaffolds. Nano. 2012;7(04):1230004.
  • Peng M, Kokuryo D, Cabral H, et al. Hydrothermally synthesized PEGylated calcium phosphate nanoparticles incorporating Gd-DTPA for contrast enhanced MRI diagnosis of solid tumors. J Control Release. 2013;174(1):63–71.
  • And SB, Saha SK. Synthesis and characterization of hydroxyapatite nanopowders by emulsion technique. Chem Mater. 2003;15(23):4464–4469.
  • Mohn D, Doebelin N, Tadier S, et al. Reactivity of calcium phosphate nanoparticles prepared by flame spray synthesis as precursors for calcium phosphate cements. J Mater Chem. 2011;21(36):13963–13972.
  • Shu C, Wang Y, Hong L, et al. Synthesis of carbonated hydroxyapatite nanofibers by mechanochemical methods. Ceram Int. 2005;31(1):135–138.
  • Xu JL, Khor KA, Dong ZL, et al. Preparation and characterization of nano-sized hydroxyapatite powders produced in a radio frequency (rf) thermal plasma. Mat Sci Eng A. 2004;374(1):101–108.
  • Li B, Chen X, Guo B, et al. Fabrication and cellular biocompatibility of porous carbonated biphasic calcium phosphate ceramics with a nanostructure. Acta Biomater. 2009;5(1):134–143.
  • Castro F, Ribeiro VP, Ferreira A, et al. Continuous-flow precipitation as a route to prepare highly controlled nanohydroxyapatite: in vitro mineralization and biological evaluation. Mater Res Express. 2016;3(7):075404.
  • Saeed MI, Omar AR, Hussein MZ, et al. Systemic antibody response to nano-size calcium phosphate biocompatible adjuvant adsorbed HEV-71 killed vaccine. Clin Exp Vaccine Res. 2015;4(1):88–98.
  • Koppad S, Raj GD, Gopinath VP, et al. Calcium phosphate coupled Newcastle disease vaccine elicits humoral and cell mediated immune responses in chickens. Res Vet Sci. 2011;91(3):384–390.
  • He Q, Mitchell AR, Johnson SL, et al. Calcium phosphate nanoparticle adjuvant. Clin Diagn Lab Immunol. 2000;7(6):899–903.
  • He Q, Mitchell A, Morcol T, et al. Calcium phosphate nanoparticles induce mucosal immunity and protection against herpes simplex virus type 2. Clin Diagn Lab Immunol. 2002;9(5):1021–1024.
  • Knuschke T, Rotan O, Bayer W, et al. Combination of nanoparticle-based therapeutic vaccination and transient ablation of regulatory T cells enhances anti-viral immunity during chronic retroviral infection. Retrovirology. 2016;13(1):1–11.
  • Behera T, Swain P. Antigen adsorbed calcium phosphate nanoparticles stimulate both innate and adaptive immune response in fish, Labeo rohita H. Cell Immunol. 2011;271(2):350–359.
  • Joyappa DH, Kumar CA, Banumathi N, et al. Calcium phosphate nanoparticle prepared with foot and mouth disease virus P1-3CD gene construct protects mice and guinea pigs against the challenge virus. Vet Microbiol. 2009;139(1):58–66.
  • Rahimi MT, Sarvi S, Sharif M, et al. Immunological evaluation of a DNA cocktail vaccine with co-delivery of calcium phosphate nanoparticles (CaPNs) against the Toxoplasma gondii RH strain in BALB/c mice. Parasitol Res. 2016;116:609616.
  • Yan XF, Gao S, Xia JF, et al. Epidemic characteristics of hand, foot, and mouth disease in Shanghai from 2009 to 2010: enterovirus 71 subgenotype C4 as the primary causative agent and a high incidence of mixed infections with coxsackievirus A16. J Infect Dis. 2012;44(4):297–305.
  • Yang C, Deng C, Wan J, et al. Neutralizing antibody response in the patients with hand, foot and mouth disease to enterovirus 71 and its clinical implications. Virol J. 2011;8(1):1–6.
  • Alexander DJ. Newcastle disease. Brit Poultry Sci. 2001;42(1):5–22.
  • Kapczynski DR, Afonso CL, Miller PJ. Immune responses of poultry to Newcastle disease virus. Dev Comp Immunol. 2013;41(3):447–453.
  • Zelinskyy G, Dietze K, Sparwasser T, et al. Regulatory T cells suppress antiviral immune responses and increase viral loads during acute infection with a lymphotropic retrovirus. Plos Pathog. 2009;5(8):e1000406.
  • Fang HM, Ge R, Sin YM. Cloning, characterisation and expression of Aeromonas hydrophila major adhesin. Fish Shellfish Immun. 2004;16(5):645–658.
  • Parida S, Oh Y, Reid SM, et al. Interferon-gamma production in vitro from whole blood of foot-and-mouth disease virus (FMDV) vaccinated and infected cattle after incubation with inactivated FMDV. Vaccine. 2006;24(7):964–969.
  • Doel TR. FMD vaccines. Virus Res. 2003;91(1):81–99.
  • Beard C, Ward G, Rieder E, et al. Development of DNA vaccines for foot-and-mouth disease, evaluation of vaccines encoding replicating and non-replicating nucleic acids in swine. J Biotechnol. 1999;73(2):243–249.
  • Innes EA. Vaccination against Toxoplasma gondii: an increasing priority for collaborative research? Expert Rev Vaccines. 2010;9(10):1117–1119.
  • Zhang NZ, Chen J, Wang M, et al. Vaccines against Toxoplasma gondii: new developments and perspectives. Exp Rev Vaccines. 2013;12(11):1287–1299.
  • Glenny A, Pope C. The antigenic effect of intravenous injection of diphtheria toxin. J Pathol Bacteriol. 1925;28(2):273–278.
  • Waksman BH, Bullington S. Studies of arthritis and other lesions induced in rats by injection of mycobacterial adjuvant: III. Lesions Eye Arch Ophthalmol. 1960;64(5):751–762.
  • Sunita A, Babiuk LA, George M. Mechanisms of action of adjuvants. Front Immunol. 2013;4(1):114–114.
  • Wang C, Liu P, Zhuang Y, et al. Lymphatic-targeted cationic liposomes: a robust vaccine adjuvant for promoting long-term immunological memory. Vaccine. 2014;32(42):5475–5483.
  • Jones S, Asokanathan C, Kmiec D, et al. Protein coated microcrystals formulated with model antigens and modified with calcium phosphate exhibit enhanced phagocytosis and immunogenicity. Vaccine. 2014;32(33):4234–4242.
  • Kool M, Petrilli V, De Smedt T, et al. Cutting edge: alum adjuvant stimulates inflammatory dendritic cells through activation of the NALP3 inflammasome. J Immunol. 2008;181(6):3755–3759.
  • Elliott EI, Sutterwala FS. Initiation and perpetuation of NLRP3 inflammasome activation and assembly. Immunol Rev. 2015;265(1):35–52.
  • Tschopp J, Schroder K. NLRP3 inflammasome activation: the convergence of multiple signalling pathways on ROS production? Nat Rev Immunol. 2010;10(3):210–215.
  • Ronchi F, Basso C, Preite S, et al. Experimental priming of encephalitogenic Th1/Th17 cells requires pertussis toxin-driven IL-1β production by myeloid cells. Nat Commun. 2016;7:11541.
  • Eisenbarth SC, Colegio OR, O’Connor W, et al. Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature. 2008;453(7198):1122–1126.
  • Marrack P, Mckee AS, Munks MW. Towards an understanding of the adjuvant action of aluminium. Nat Rev Immunol. 2009;9(4):287–293.
  • Pazár B, Ea HK, Narayan S, et al. Basic calcium phosphate crystals induce monocyte/macrophage IL-1β secretion through the NLRP3 inflammasome in vitro. J Immunol. 2011;186(4):2495–2502.
  • Hayashi M, Aoshi T, Kogai Y, et al. Optimization of physiological properties of hydroxyapatite as a vaccine adjuvant. Vaccine. 2015;34(3):306–312.
  • Johansen P, Mohanan D, Martínez-Gómez JM, et al. Lympho-geographical concepts in vaccine delivery. J Control Release. 2010;148(1):56–62.
  • Platt AM, Randolph GJ. Dendritic cell migration through the lymphatic vasculature to lymph nodes. Adv Immunol. 2013;120(120):51–68.
  • Fifis T, Gamvrellis A, Crimeen-Irwin B, et al. Size-dependent immunogenicity: therapeutic and protective properties of nano-vaccines against tumors. J Immunol. 2004;173(5):3148–3154.
  • Manolova V, Flace A, Bauer M, et al. Nanoparticles target distinct dendritic cell populations according to their size. Eur J Immunol. 2008;38(5):1404–1413.
  • Reddy ST, Rehor A, Schmoekel HG, et al. In vivo targeting of dendritic cells in lymph nodes with poly(propylene sulfide) nanoparticles. J Control Release. 2006;112(1):26–34.
  • Smith DM, Simon JK, Baker JR Jr. Applications of nanotechnology for immunology. Nat Rev Immunol. 2013;13(8):592–605.
  • Zhao L, Seth A, Wibowo N, et al. Nanoparticle vaccines. Vaccine. 2014;32(3):327–337.
  • Banchereau J, Steinman RM. Dendritic cells and the control immunity. Nature. 1998;392(6673):245–252.
  • Shah RR, O’Hagan DT, Amiji MM, et al. The impact of size on particulate vaccine adjuvants. Nanomedicine. 2014;9(17):2671–2681.
  • Burgdorf S, Lukacskornek V, Kurts C. The mannose receptor mediates uptake of soluble but not of cell-associated antigen for cross-presentation. J Immunol. 2006;176(11):6770–6776.
  • Burgdorf S, Kautz A, Böhnert V, et al. Distinct pathways of antigen uptake and intracellular routing in CD4 and CD8 T cell activation. Science. 2007;316(5824):612–616.
  • Flach TL, Ng G, Hari A, et al. Alum interaction with dendritic cell membrane lipids is essential for its adjuvanticity. Nat Med. 2011;17(4):479–487.
  • Reed SG, Orr MT, Fox CB. Key roles of adjuvants in modern vaccines. Nat Med. 2013;19(12):1597–1608.
  • Wang S, Mcdonnell EH, Sedor FA, et al. pH effects on measurements of ionized calcium and ionized magnesium in blood. Arch Pathol Lab Med. 2002;126(8):947–950.
  • Alberts B, Johnson A, Lewis J, et al. Molecular biology of the cell. Fifth edition. New York: Garland Science. 2007:1577–1579.
  • Dorozhkin SV, Epple M. Biological and medical significance of calcium phosphates. ChemInform. 2002;41(47):3130–3146.
  • Gupta RK, Rost BE, Relyveld E, et al. Adjuvant properties of aluminum and calcium compounds. Pharm Biotechnol. 1995;6:229–248.
  • Rivera GP, Hühn D, Mercato LL, et al. Nanopharmacy: inorganic nanoscale devices as vectors and active compounds. Pharmacol Res. 2010;62(2):115–125.
  • Irvine DJ, Hanson MC, Rakhra K, et al. Synthetic nanoparticles for vaccines and immunotherapy. Chem Rev. 2015;115(19):11109–11146.
  • Toh MR, Chiu GNC. Liposomes as sterile preparations and limitations of sterilisation techniques in liposomal manufacturing. Asian J Pharm Sci. 2013;8(2):88–95.
  • WHO good manufacturing practices for biological products. 2015. In: WHO Expert Committee on Biological Standardization. Sixty-sixth report. Geneva, World Health Organization, Technical Report Series, No. 999, annex 2. Replacement of Annex 1 of WHO Technical Report Series, No. 822.
  • Guidelines on stability Evaluation of Vaccines. 2011. In: WHO Expert Committee on Biological Standardization. Fifty-seventh report. Geneva, World Health Organization, Technical Report Series, No. 962, annex 3.
  • Guidelines on the nonclinical evaluation of vaccine adjuvants and adjuvanted vaccines. 2013. In: WHO Expert Committee on Biological Standardization. Sixty-fourth report. Geneva, World Health Organization, Technical Report Series, No. 987, annex 2.
  • Guidelines for clinical evaluation of vaccines: regulatory expectations. 2016. In: WHO Expert Committee on Biological Standardization. Geneva, World Health Organization, Technical Report Series (in press). Revision of WHO TRS 924, Annex 1. Available from: http://www.who.int/biologicals/vaccines/en/
  • European Medicines Agency. Guideline on adjuvants in vaccines for human use. London; 2005. EMEA/CHMP/VEG/134716/2004. Available from: http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500003809.pdf
  • Ito A, Kawamura H, Miyakawa S, et al. Resorbability and solubility of zinc-containing tricalcium phosphate. J Biomed Mater Res A. 2002;60(2):224–231.
  • Ito A, Ojima K, Naito H, et al. Preparation, solubility, and cytocompatibility of zinc-releasing calcium phosphate ceramics. J Biomed Mater Res A. 2000;50(2):178–183.
  • Pele LC, Haas CT, Hewitt RE, et al. Synthetic mimetics of the endogenous gastrointestinal nanomineral: silent constructs that trap macromolecules for intracellular delivery. Nanomed-Nanotechnol. 2017;13(2):619–630.
  • Wang X, Li X, Ito A, et al. Rod-shaped and substituted hydroxyapatite nanoparticles stimulating type 1 and 2 cytokine secretion. Colloid Surface B. 2016;139:10–16.
  • Wang X, Li X, Onuma K, et al. Zn- and Mg-containing tricalcium phosphates-based adjuvants for cancer immunotherapy. Sci Rep-UK. 2013;3(29):2203–2203.
  • Xia L, Wang X, Yu S, et al. Mesoporous silica-calcium phosphate-tuberculin purified protein derivative composites as an effective adjuvant for cancer immunotherapy. Adv Healthc Mater. 2013;2(6):863–871.
  • Hanifi A, Fathi MH, Mir MSH. Effect of strontium ions substitution on gene delivery related properties of calcium phosphate nanoparticles. J Mater Sci-Mater M. 2010;21(9):2601–2609.
  • Kozlova D, Sokolova V, Zhong M, et al. Calcium phosphate nanoparticles show an effective activation of the innate immune response in vitro and in vivo after functionalization with flagellin. Virol Sinica. 2014;29(1):33–39.
  • Knuschke T, Sokolova V, Rotan O, et al. Immunization with biodegradable nanoparticles efficiently induces cellular immunity and protects against influenza virus infection. J Immunol. 2013;190(12):6221–6229.
  • Sokolova V, Knuschke T, Kovtun A, et al. The use of calcium phosphate nanoparticles encapsulating Toll-like receptor ligands and the antigen hemagglutinin to induce dendritic cell maturation and T cell activation. Biomaterials. 2010;31(21):5627–5633.
  • Garçon N, Van MM. Recent clinical experience with vaccines using MPL- and QS-21-containing adjuvant systems. Expert Rev Vaccines. 2011;10(4):471–486.
  • Miller E, Andrews N, Stellitano L, et al. Risk of narcolepsy in children and young people receiving AS03 adjuvanted pandemic A/H1N1 2009 influenza vaccine: retrospective analysis. BMJ. 2013;346:f794.
  • Seya T, Shime H, Takeda Y, et al. Adjuvant for vaccine immunotherapy of cancer-focusing on Toll-like receptor 2 and 3 agonists for safely enhancing antitumor immunity. Cancer Sci. 2015;106(12):1659–1668.
  • Marcus JK Calcium phosphate gels: U.S. Patent 2,605,229. 1952-7–29.
  • Oyewumi MO, Kumar AZ. Nano-microparticles as immune adjuvants: correlating particle sizes and the resultant immune responses. Expert Rev Vaccines. 2010;9(9):1095–1107.
  • Yan S, Gu W, Xu ZP. Re-considering how particle size and other properties of antigen-adjuvant complexes impact on the immune responses. J Colloid Interf Sci. 2013;395(1):1–10.
  • Hiep K, Overwijk WW. Adjuvants for peptide-based cancer vaccines. J Immunother Cancer. 2016;4(1):56.
  • Saade F, Petrovsky N. Technologies for enhanced efficacy of DNA vaccines. Expert Rev Vaccines. 2012;11(2):189–209.
  • Graham FL, Van der Eb AJ. Transformation of rat cells by DNA of human adenovirus 5. Virology. 1973;54(2):536–539.
  • Truong-Le VL, Walsh SM, Schweibert E, et al. Gene transfer by DNA-gelatin nanospheres. Arch Biochem Biophys. 1999;361(1):47–56.
  • Qi HY, Daniels MP, Liu Y, et al. A cytosolic phospholipase A2 (cPLA2)-initiated lipid mediator pathway induces autophagy in macrophages. J Immunol. 2011;187(10):5286–5292.
  • Maitra A. Calcium phosphate nanoparticles: second-generation nonviral vectors in gene therapy. Expert Rev Mol Diagn. 2005;5(6):893–905.
  • Bisht S, Bhakta G, Mitra S, et al. pDNA loaded calcium phosphate nanoparticles: highly efficient non-viral vector for gene delivery. Int J Pharmaceut. 2005;288(1):157–168.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.