2,481
Views
56
CrossRef citations to date
0
Altmetric
Review

Vero cell technology for rapid development of inactivated whole virus vaccines for emerging viral diseases

, , , &
Pages 883-894 | Received 17 Nov 2016, Accepted 17 Jul 2017, Published online: 27 Jul 2017

References

  • Plotkin SL, Plotkin SA. A short history of vaccination. In: Vaccines. Plotkin SA, Orenstein WA, Offit PA, eds. 6th ed. PA, USA: Elsevier Saunders; 2013. p. 1–13.
  • Enders JF, Weller TH, Robbins FC. Cultivation of the Lansing strain of poliomyelitis virus in cultures of various human embryonic tissues. Science. 1949;109:85–87.
  • Vidor E, Plotkin SA. Poliovirus vaccine – inactivated. In: Plotkin SA, Orenstein WA, Offit PA, eds. Vaccines. 6th ed. PA, USA: Elsevier Saunders; 2013. p. 573–597.
  • Hayflick L, Moorehead PS. The serial cultivation of human diploid cell substrates. Exp Cell Res. 1961;25:585–621.
  • Plotkin SA. Rabies vaccine prepared in human cell cultures: progress and perspectives. Rev Infect Dis. 1980;2:433–448.
  • US Department of Health, Education and Welfare, Public Health Service. Regulation for the manufacture of biological products, title 42, part 73. DHEW pub. No. (NIH) 71-161, formerly PHS publ. No. 437, revised 1971-1976
  • Yasumura Y, Kawakita Y. Study of SV40 in tissue culture. Nippon Rinsho. 1963;21:1201–1205.
  • Horaud F. Absence of viral sequence in the WHO-Vero cell bank a collaborative study. Dev Biol Stand. 1992;76:43–46.
  • Levenbook IS, Petricciano JC, Elisberg BL. Tumorigenicity of Vero cell. J Biol Stand. 1984;12:391–398.
  • Furesz J, Fanok A, Contreras G, et al. Tumorigenicity testing of various cell line substrates for production of biologicals. Dev Biol Stand. 1989;70:233–243.
  • Vincent-Falquet JC, Peyron L, Souvras M, et al. Qualification of working cell bank for the Vero cell line to produce licensed human vaccines. Dev Biol Stand. 1989;70:153–156.
  • Montagnon BJ, Vincent-Falquet JC, Saluzzo JF. Experience with Vero cells at Pasteur Merieux Connaught. Dev Biol Stand. 1999;98:137–140.
  • WHO requirements for biological substances no. 50: requirements for the use of animal cells as in vitro substrates for the production of biologicals. Annex 1. WHO Technical Report Series 878: 19–56, 1998
  • Rhim JS, Schell K, Creasy B, et al. Biological characteristics and viral susceptibility of an African green monkey kidney cell line (Vero). Proc Soc Exp Biol Med. 1969;132:670–678.
  • Desmyter J, Melnick JL, Rawls WE. Defectiveness of interferon production and of Rubella virus interference in a line of African green monkey kidney cells (Vero). J Virol. 1968;2:955–961.
  • Montagnon BJ, Fanget B, Nicolas AJ. The large-scale cultivation of Vero cells in microcarrier culture for virus vaccine production: preliminary results for killed poliovirus vaccine. Dev Biol Stand. 1981;47:55–64.
  • Sutter RW, Kew OM, Cochi SL, et al. Polio virus vaccine – live. In: Plotkin SA, Orenstein WA, Offit PA, eds. Vaccines. 6th ed. PA, USA: Elsevier Saunders; 2013. p. 598–645.
  • Doroshenko A, Halperin SA. Trivalent MDCK cell culture-derived influenza vaccine Optaflu (Novartis Vaccines). Expert Rev Vaccines. 2009;8:679–688.
  • Pau MG, Ophorst C, Koldijk MH, et al. The human cell line PER.C6 provides a new manufacturing system for the production of influenza vaccines. Vaccine. 2001;19:2716–2727.
  • Reiter M, Portsmouth D, Barrett PN. Avian suspension culture cell lines for production of vaccines and other biologicals. In: Meyer HP, Schmidhalter DR, eds. Industrial scale suspension culture of living cells. Weinheim, Germany: Wiley Blackwell; 2014. p. 391–408.
  • Ellis RW, Rappuoli R, Ahmed S. Technologies for making new vaccines. In: Plotkin SA, Orenstein WA, Offit PA, eds. Vaccines. 6th ed. PA, USA: Elsevier Saunders; 2013. p. 1182–1199.
  • Fiore AE, Bridges CB, Katz JM, et al. Inactivated influenza vaccines. In: Vaccines. Plotkin SA, Orenstein WA, Offit PA, eds. 6th ed. PA, USA: Elsevier Saunders; 2013. p. 257–293.
  • Rupprecht CE, Plotkin SA. Rabies vaccine. In: Plotkin SA, Orenstein WA, Offit PA, eds. Vaccines. 6th ed. PA, USA: Elsevier Saunders; 2013. p. 646–668.
  • Halstead SB, Jacobson J, Dubischar-Kastner K. Japanese encephalitis vaccines. In: Plotkin SA, Orenstein WA, Offit PA, eds. Vaccines. 6th ed. PA, USA: Elsevier Saunders; 2013. p. 312–351.
  • Murphy TV, Feinstone SM, Bell BP. Hepatitis A vaccines. In: Plotkin SA, Orenstein WA, Offit PA, eds. Vaccines. 6th ed. PA, USA: Elsevier Saunders; 2013. p. 183–204.
  • Barrett PN, Portsmouth D, Ehrlich HJ. Tick-borne encephalitis virus vaccines. In: Plotkin SA, Orenstein WA, Offit PA, eds. Vaccines. 6th ed. PA, USA: Elsevier Saunders; 2013. p. 773–788.
  • Harrison SC. Principles of virus structure. In: Knipe DM, Howley PM, eds. Fields virology. 6th ed. PA, USA: Wolter Kluwer; 2013. p. 59–98.
  • Bachmann MF, Jennings GT. Vaccine delivery; a matter of size, geometry, kinetics and molecular patterns. Nat Rev Immunol. 2010;10:787–796.
  • Siegrist CA. Vaccine immunology. In: Plotkin SA, Orenstein WA, Offit PA, eds. Vaccines. 6th ed. PA, USA: Elsevier Saunders; 2013. p. 14–32.
  • Groothuis TA, Neefjes J. The many roads to cross-presentation. J Exp Med. 2005;202:1313–1318.
  • Manolova V, Flace A, Bauer M, et al. Nanoparticles target distinct dendritic cell populations according to their size. Eur J Immunol. 2008;38:1404–1413.
  • Roozendaal R, Mebius RE, Kraal G. The conduit system of the lymph node. Int Immunol. 2008;20:1483–1487.
  • Aghebati-Maleki L, Bakhshinejad B, Baradaran B, et al. Phage display as a promising approach for vaccine development. J Biomed Sci. 2016;23:66–84.
  • Scherle PA, Gerhard W. Functional analysis of influenza-specific helper T cell clones in vivo: T cells specific for internal proteins provide cognate help for B cell responses to hemagglutinin. J Exp Med. 1986;164:1114–1128.
  • Lamb JR, McMichael AJ, Rothbard JB. T-cell recognition of influenza virus antigens. Hum Immunol. 1987;19:79–89.
  • Van Damme P, Ward J, Shouval D, et al. Hepatitis B vaccines. In: Plotkin SA, Orenstein WA, Offit PA, eds. Vaccines. 6th ed. PA, USA: Elsevier Saunders; 2013. p. 205–234.
  • Schiller JT, Lowy DR, Markowitz LE. Human papillomavirus vaccines. In: Plotkin SA, Orenstein WA, Offit PA, eds. Vaccines. 6th ed. PA, USA: Elsevier Saunders; 2013. p. 235–256.
  • http://who.int/influenza/resources/documents/influenzaRMD2003_5.pdf (accessed on Feb 20, 2017)
  • Wolff JA, Malone RW, Williams P, et al. Direct gene transfer into mouse muscle in vivo. Science. 247:1465–1468,1990.
  • Khan KH. DNA vaccines: role against diseases. Germs. 2013;3(1):26–35.
  • Liu MA. DNA vaccines: an historical perspective and view to the future. Immunol Rev. 2011;239(1):62–84.
  • Pereira VB, Zurita-Turk M, Saraiva TDL, et al. DNA vaccines approach: from concepts to applications. World Journal of Vaccines. 2014;4:50–71.
  • Petsch B, Schnee M, Vogel AB, et al. Protective efficacy of in vitro synthesized, specific mRNA vaccines against influenza A virus infection. Nat Biotechnol. 2012;30:1210–1216.
  • Fleeton MN, Chen M, Berglund P, et al. Self-replicative RNA vaccines elicit protection against influenza A virus, respiratory syncytial virus, and a tickborne encephalitis virus. J Infect Dis. 2001;183:1395–1398.
  • Kofler RM, Aberle JH, Aberle SW, et al. Mimicking live flavivirus immunization with a noninfectious RNA vaccine. Proc Natl Acad Sci USA. 2004;101(7):1951–1956.
  • Sahin U, Karikó K, Türeci Ö. mRNA-based therapeutics–developing a new class of drugs. Nat Rev Drug Discov. 2014;13(10):759–780.
  • Guy B, Guirakhoo F, Barban V, et al. Preclinical and clinical development of YFV 17D-based chimeric vaccines against dengue, West Nile and Japanese encephalitis viruses. Vaccine. 2010;28:632–649.
  • Frietze KM, Peabody DS, Chackerian B. Engineering virus-like particles as vaccine platforms. Curr Opin Virol. 2016;18:44–49.
  • Ehrlich HJ, Müller M, Kollaritsch H, et al. Pre-vaccination immunity and immune responses to a cell culture-derived whole-virus H1N1 vaccine are similar to a seasonal influenza vaccine. Vaccines. 2012;30:4543–4551.
  • Löw Baselli A, Pavlova BG, Fritsch S, et al. A non-adjuvanted whole-virus H1N1 pandemic vaccine is well tolerated and highly immunogenic in children and adolescents and induces substantial immunological memory. Vaccine. 2012;30:5956–5966.
  • Barrett PN, Portsmouth D, Ehrlich HJ. Vero cell culture-derived pandemic influenza vaccines: preclinical and clinical development. Expert Rev Vaccines. 2013;12:395–413.
  • Ehrlich HJ, Müller M, Oh HML, et al. A clinical trial of a whole virus H5N1 vaccine derived from cell culture. New Engl J Med. 2008;358:2573–2584.
  • van der Velden MVW, Fritz R, Pöllabauer EM, et al. Safety and immunogenicity of a Vero cell culture-derived whole-virus H5N1 influenza vaccine in a pediatric population. J Infect Dis. 2014;209:12–23.
  • Wodal W, Schwendinger M, Savidis-Dacho H, et al. Immunogenicity and protective efficacy of a Vero cell culture-derived whole-virus H7N9 vaccine in mice and guinea pigs. PLoS One. 2015;10(2):1-16 (e113963).
  • Aichinger G, Grohmann-Izay B, van der Velden MVW, et al. Phase I/II randomized double-blind study of the safety and immunogenicity of a non-adjuvanted vero cell culture-derived whole-virus H9N2 influenza vaccine in healthy adults. Clin Vacc Immunol. 2015;22:46–55.
  • Spruth M, Kistner O, Savidis-Dacho H, et al. A double-inactivated whole virus candidate SARS coronavirus vaccine stimulates neutralising and protective antibody responses. Vaccine. 2006;24:652–661.
  • Cameron MJ, Kelvin AA, Leon AJ, et al. Lack of innate immune interferon immune responses during SARS coronavirus infection in a vaccination and reinfection ferret model. PLoS One. 2012;7(9):e45842.
  • Orlinger K, Holzer GW, Schwaiger J, et al. An inactivated West Nile Virus vaccine derived from a chemically synthesized cDNA system. Vaccine. 2010;28:3318–3324.
  • Holzer GW, Coulibaly S, Aichinger G, et al. Evaluation of an inactivated Ross River virus vaccine in active and passive mouse immunization models and establishment of a correlate of protection. Vaccine. 2011;29:4132–4141.
  • Aichinger G, Ehrlich HJ, Aaskov JG, et al. Safety and immunogenicity of an inactivated whole virus Vero cell-derived Ross River virus vaccine: a randomized trial. Vaccine. 2011;29:9376–9384.
  • Wressnigg N, van der Velden MVW, Portsmouth D, et al. An inactivated Ross River virus vaccine is well-tolerated and immunogenic in an adult population: a randomized phase 3 trial. Clin Vacc Immunol. 2015;22:267–273.
  • http://www.who.int/influenza/human_animal_interface/H5N1_cumulative_table_archives/en/ (accessed on Feb 20, 2017)
  • Trombetta C, Piccirella S, Perini D, et al. Emerging influenza strains on the last decades: a threat of a new pandemic? Vaccines. 2015;3:172–185.
  • van der Velden MVW, Aichinger G, Pöllabauer EM, et al. Cell culture (Vero cell) derived whole-virus non-adjuvanted H5N1 influenza vaccine induces long-lasting cross-reactive memory immune response: homologous or heterologous booster response following two dose or single dose priming. Vaccine. 2012;30:6127–6135.
  • van der Velden MVW, Geisberger A, Dvorak T, et al. Safety and immunogenicity of a Vero cell culture-derived whole-virus H5N1 influenza vaccine in chronically ill and immunocompromised patients. Clin Vacc Immunol. 2014;21:867–876.
  • Fritz R, Sabarth N, Kiermayr S, et al. A Vero cell-derived whole-virus H5N1 vaccine effectively induces neuraminidase-inhibiting antibodies. J Infec Dis. 2012;205:28–34.
  • Crowe BA, Bruehl P, Gerencer M, et al. Evaluation of the cellular immune responses induced by a non-adjuvanted inactivated whole virus A/H5N1/VN/1203 Pandemic Influenza vaccine in humans. Vaccine. 2011;29:166–173.
  • Twenty-second pandemic pharmacovigilance update. European Medicines Agency, Report No.: EMA/527985/2010, 2010
  • Harley D, Sleigh A, Ritchie S. Ross River virus transmission, infection, and disease: a cross-disciplinary review. Clin Microbiol Rev. 2001;14:909–932.
  • Aaskov J, Williams L, Yu S. A candidate Ross River virus vaccine: preclinical evaluation. Vaccine. 1997;15:1396–1404.
  • U.S. Department of Health and Human Services, Food and Drug Administration, Washington DC, USA. Product development under the animal rule. Guidance for industry. 2015.
  • Ohmit SE, Petrie JG, Cross RT, et al. Influenza hemagglutination – inhibition antibody titer as a correlate of vaccine-induced protection. J Infect Dis. 2011;204:1879–1885.
  • Black S, Nicolay U, Vesikari T, et al. Hemagglutination inhibition antibody titers as a correlate of protection for inactivated influenza vaccines in children. Pediatr Infect Dis J. 2011;30:1081–1085.
  • Zika situation report. http://www.who.int/emergencies/zika-virus/situation-report/5-may-2016/en/ (accessed on Nov 10, 2016)
  • Ebola virus disease outbreak. http://www.who.int/csr/disease/ebola/en/ (accessed on Feb 20, 2017)
  • Middle East respiratory syndrome coronavirus. http://www.who.int/emergencies/mers-cov/en/ (accessed on Feb 20, 2017)
  • Chikungunya. http://www.who.int/csr/don/archive/disease/chikungunya/en/ (accessed on Feb 20, 2017)
  • West Nile. http://www.cdc.gov/westnile/statsmaps/index.html (accessed on Feb 20, 2017)
  • Tang H, Hammack C, Ogden SC, et al. Zika virus infects human cortical neural progenitors and attenuates their growth. Cell Stem Cell. 2016;18:1–4.
  • Mlakar J, Korva M, Tul N, et al. Zika virus associated with microcephaly. N Engl J Med. 2016;374(10):951.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.