225
Views
0
CrossRef citations to date
0
Altmetric
Review

“cART intensification by the HIV-1 Tat B clade vaccine: progress to phase III efficacy studies”

, , , , , , , , , , & show all
Pages 115-126 | Received 21 Sep 2017, Accepted 14 Dec 2017, Published online: 22 Dec 2017

References

  • Siliciano JM, Siliciano RF. The remarkable stability of the latent reservoir for HIV-1 in resting memory CD4+ T cells. J Infect Dis. 2015;212(9):1345–1347.
  • Gupta RK, Jordan MR, Sultan BJ, et al. Global trends in antiretroviral resistance in treatment-naive individuals with HIV after rollout of antiretroviral treatment in resource-limited settings: a global collaborative study and meta-regression analysis. Lancet. 2012;380(9849):1250–1258.
  • UNAIDS. 2015. Available from: http://www.unaids.org/en/regionscountries/countries/southafrica
  • Kufa-Chakezha T, De Gita G, Ballah NJ, et al. Determinants of CD4 immune recovery among individuals on antiretroviral therapy in South Africa: a national analysis. 21st International AIDS Conference; 18–22 July 2016; Durban, South Africa. Available from: http://programme.aids2016.org/Abstract/Abstract/2503
  • Kelley CF, Kitchen CMR, Hunt PW, et al. Incomplete peripheral CD4+ cell count restoration in HIV-infected patients receiving long-term antiretroviral treatment. Clin Infect Dis. 2009;48(6):787–794.
  • Engsig FN, Zangerle R, Katsarou O, et al. Long-term mortality in HIV-positive individuals virally suppressed for >3 years with incomplete CD4 recovery. Clin Infect Dis. 2014;58(9):1312–1321.
  • Sonnenberg P, Glynn JR, Fielding K, et al. How soon after infection with HIV does the risk of tuberculosis start to increase? A retrospective cohort study in South African gold miners. J Infect Dis. 2005;191(2):150–158.
  • Palella FJ, Baker RK, Moorman AC, et al. Mortality in the highly active antiretroviral therapy era: changing causes of death and disease in the HIV outpatient study. J Acquir Immune Defic Syndr. 2006;43(1):27–34.
  • Eckard AR, Rosebush JC, Lee ST, et al. Increased immune activation and exhaustion in HIV-infected youth. Pediatr Infect Dis J. 2016;35(12):370–377.
  • Barlow-Mosha L, Eckard AR, McComsey GA, et al. Metabolic complications and treatment of perinatally HIV-infected children and adolescents. J Intern AIDS Soc. 2013;16(1):18600.
  • van Rossum AM, Fraaij PL, de Groot R. Efficacy of highly active antiretroviral therapy in HIV-1 infected children. Lancet Infect Dis. 2002;2(2):93–102.
  • Sigaloff KC, Calis JC, Geelen SP, et al. HIV-1-resistance-associated mutations after failure of first-line antiretroviral treatment among children in resource-poor regions: a systematic review. Lancet Infect Dis. 2011;11(10):769–779.
  • Simoni JM, Montgomery A, Martin E, et al. Adherence to antiretroviral therapy for pediatric HIV infection: a qualitative systematic review with recommendations for research and clinical management. Pediatrics. 2007;119(6):1371–1383.
  • Bernays S, Jarrett P, Kranzer K, et al. Children growing up with HIV infection: the responsibility of success. Lancet. 2014;383(9925):1355–1377.
  • Ensoli B, Cafaro A, Monini P, et al. Challenges in HIV vaccine research for treatment and prevention. Front Immunol. 2014;5:417.
  • Chun TW, Murray D, Justement JS, et al. Relationship between residual plasma viremia and the size of HIV proviral DNA reservoirs in infected individuals receiving effective antiretroviral therapy. J Infect Dis. 2011;204(1):135–138.
  • Arya SK, Guo C, Josephs SF, et al. Trans-activator gene of human T lymphotropic virus type III [HTLV III]. Science. 1985;229(4708):69–73.
  • Fisher AG, Feinberg MB, Joseph SF, et al. The trans-activator gene of HTLV-III is essential for virus replication. Nature. 1986;320(6060):367–371.
  • Wu Y, Marsh JW. Selective transcription and modulation of resting T cell activity by preintegrated HIV DNA. Science [New York, NY]. 2001;293(5534):1503–1506.
  • Jordan A, Defechereux P, Verdin E. The site of HIV-1 integration in the human genome determines basal transcriptional activity and response to Tat transactivation. Embo J. 2001;20(7):1726–1738.
  • Quaresma AJC, Bugai A, Barboric M. Cracking the control of RNA polymerase II elongation by 7SK snRNP and P-TEFb. Nucleic Acids Res. 2016;44(16):7527–7539.
  • Weinberger LS, Burnett JC, Toettcher JE, et al. Stochastic gene expression in a lentiviral positive-feedback loop: HIV-1 Tat fluctuations drive phenotypic diversity. Cell. 2005;122(2):169–182.
  • Shan L, Deng K, Gao H, et al. Transcriptional reprogramming during effector-to-memory transition renders CD4+ T cells permissive for latent HIV-1 infection. Immunity. 2017;47(4):766–775.
  • Razooky BS, Pai A, Aull K, et al. HIV latency program. Cell. 2015;160(5):990–1001. DOI:10.1016/j.cell.2015.02.009.
  • Kessing CF, Nixon CC, Li C, et al. In vivo suppression of HIV rebound by didehydro-cortistatin A, a “block-and-lock” strategy for HIV-1 treatment. Cell Rep. 2017;21(3):600–611.
  • Ensoli B, Buonaguro L, Barillari G, et al. Release, uptake, and effects of extracellular human immunodeficiency virus type 1 Tat protein on cell growth and viral transactivation. J Virol. 1993;67(1):277–287.
  • Chang HC, Samaniego F, Nair BC, et al. HIV-1 Tat protein exits from cells via a leaderless secretory pathway and binds to extracellular matrix-associated heparan sulfate proteoglycans through its basic region. AIDS. 1997;11(12):1421–1431.
  • Monini P, Cafaro A, Srivastava IK, et al. HIV-1 tat promotes integrin-mediated HIV transmission to dendritic cells by binding env spikes and competes neutralization by anti-HIV antibodies. PLoS One. 2012;7(11):48781.
  • Xiao H, Neuveut C, Tiffany HL, et al. Selective CXCR4 antagonism by Tat: implications for in vivo expansion of coreceptor use by HIV-1. Proc Natl Acad Sci USA. 2000;97(21):11466–11471.
  • Ensoli B, Barillari G, Salahuddin SZ, et al. Tat protein of HIV-1 stimulates growth of cells derived from Kaposi’s sarcoma lesions of AIDS patients. Nature. 1990;345(6270):84–86.
  • Ensoli B, Gendelman R, Markham P, et al. Synergy between basic fibroblast growth factor and HIV-1 Tat protein in induction of Kaposi’s sarcoma. Nature. 1994;371(6499):674–680.
  • Ott M, Emiliani S, Van Lint C, et al. Immune hyperactivation of HIV-1-infected T cells mediated by Tat and the CD28 pathway. Science. 1997;275(5305):1481–1485.
  • Rayne F, Debaisieux S, Yezid H, et al. Phosphatidylinositol-[4,5]-bisphosphate enables efficient secretion of HIV-1 Tat by infected T-cells. Embo J. 2010;29(8):1348–1362.
  • Donahue DA, Kuhl BD, Sloan RD, et al. The viral protein tat can inhibit the establishment of HIV-1 latency. J Virol. 2012;86(6):3253–3263.
  • Cafaro A, Tripiciano A, Sgadari C, et al. Development of a novel AIDS vaccine: the HIV-1 Tat protein vaccine. Expert Opin Biol Ther. 2015;15(Suppl 1):1–17.
  • Albini A, Ferrini S, Benelli R, et al. HIV-1 Tat protein mimicry of chemokines. Proc Natl Acad Sci USA. 1998;95(22):13153–13158.
  • Ghezzi S, Noonan DM, Aluigi MG, et al. Inhibition of CXCR4-dependent HIV-1 infection by extracellular HIV-1 Tat. Biochem Biophys Res Commun. 2000;270(3):992–996.
  • Mediouni S, Darque A, Baillat G, et al. Antiretroviral therapy does not block the secretion of the human immunodeficiency virus tat protein. Infect Disord Drug Targets. 2012;12(1):81–86.
  • Avettand-Fénoêl V, Hocqueloux L, Ghosn J, et al. Total HIV-1 DNA, a marker of viral reservoir dynamics with clinical implications. Clin Microbiol Rev. 2016;29(4):859–880.
  • Re MC, Vignoli M, Furlini G, et al. Antibodies against full-length Tat protein and some low-molecular-weight Tat-peptides correlate with low or undetectable viral load in HIV-1 seropositive patients. J Clin Virol. 2001;21(1):81–89.
  • Zagury JF, Sill A, Blattner W, et al. Antibodies to the HIV-1 Tat protein correlated with nonprogression to AIDS: a rationale for the use of Tat toxoid as an HIV-1 vaccine. J Hum Virol. 1998;1(4):282–292.
  • Rezza G, Fiorelli V, Dorrucci M, et al. The presence of anti-Tat antibodies is predictive of long-term nonprogression to AIDS or severe immunodeficiency: findings in a cohort of HIV-1 seroconverters. J Infect Dis. 2005;191(8):1321–1324.
  • Bellino S, Tripiciano A, Picconi O, et al. The presence of anti-Tat antibodies in HIV-infected individuals is associated with containment of CD4+ T-cell decay and viral load, and with delay of disease progression: results of a 3-year cohort study. Retrovirology. 2014;11:49.
  • Butto’ S, Fiorelli V, Tripiciano A, et al. Sequence conservation and antibody cross-recognition of clade B human immunodeficiency virus [HIV] type 1 Tat protein in HIV-1–infected Italians, Ugandans, and South Africans. J Infect Dis. 2003;188(8):1171–1180.
  • Ensoli B, Fiorelli V, Ensoli F, et al. Candidate HIV-1 Tat vaccine development: from basic science to clinical trials. AIDS. 2006;20(18):2245–2261.
  • Kashi VP, Jacob RA, Shamanna RA, et al. The grafting of universal T-helper epitopes enhances immunogenicity of HIV-1 Tat concurrently improving its safety profile. PLoS ONE. 2014;9(12):e114155.
  • Loret EP, Darque A, Jouve E, et al. Intradermal injection of a Tat Oyi-based therapeutic HIV vaccine reduces of 1.5 log copies/mL the HIV RNA rebound median and no HIV DNA rebound following cART interruption in a phase I/II randomized controlled clinical trial. Retrovirology. 2016;13(1):868.
  • Cafaro A, Caputo A, Fracasso C, et al. Control of SHIV-89.6P-infection of cynomolgus monkeys by HIV-1 Tat protein vaccine. Nat Med. 1999;5(6):643–650.
  • Cafaro A, Caputo A, Maggiorella MT, et al. SHIV89.6P pathogenicity in cynomolgus monkeys and control of viral replication and disease onset by human immunodeficiency virus type 1 Tat vaccine. J Med Primatol. 2000;29(3–4):193–208.
  • Cafaro A, Titti F, Fracasso C, et al. Vaccination with DNA containing tat coding sequences and unmethylated CpG motifs protects cynomolgus monkeys upon infection with simian/human immunodeficiency virus [SHIV89.6P]. Vaccine. 2001;19(20–22):2862–2877.
  • Borsetti A, Baroncelli S, Maggiorella MT, et al. Containment of infection in tat vaccinated monkeys after rechallenge with a higher dose of SHIV89.6P[cy243]. Viral Immunol. 2009;22(2):117–124.
  • Cafaro A, Bellino S, Titti F, et al. Impact of viral dose and major histocompatibility complex class IB haplotype on viral outcome in Tat-vaccinated Mauritian cynomolgus monkeys upon challenge with SHIV89.6P. J Virol. 2010;84(17):8953–8958.
  • Ensoli B, Fiorelli V, Ensoli F, et al. The therapeutic phase I trial of the recombinant native HIV-1 Tat protein. AIDS. 2008;22(16):2207–2209.
  • Bellino S, Francavilla V, Longo O, et al. Parallel conduction of the phase I preventive and therapeutic trials based on the Tat vaccine candidate. Rev Recent Clin Trials. 2009;4(3):195–204.
  • Ensoli B, Fiorelli V, Ensoli F, et al. The preventive phase I trial with the HIV-1 Tat-based vaccine. Vaccine. 2009;28(2):371–378.
  • Longo O, Tripiciano A, Fiorelli V, et al. Phase I therapeutic trial of the HIV-1 Tat protein and long term follow-up. Vaccine. 2009;27(25–26):3306–3312.
  • Ensoli B, Bellino S, Tripiciano A, et al. Therapeutic Immunization with HIV-1 Tat reduces immune activation and loss of regulatory T-cells and improves immune function in subjects on HAART. PLoS ONE. 2010;5(11):13540.
  • Ensoli F, Cafaro A, Casabianca A, et al. HIV-1 Tat immunization restores immune homeostasis and attacks the HAART-resistant blood HIV DNA: results of a randomized phase II exploratory clinical trial. Retrovirology. 2015;12:33.
  • Ensoli B, Nchabeleng M, Ensoli F, et al. HIV-Tat immunization induces cross-clade neutralizing antibodies and CD4 [+] T cell increases in antiretroviral-treated South African volunteers: a randomized phase II clinical trial. Retrovirology. 2016;13(1):34.
  • Katlama C, Deeks SG, Autran B, et al. Barriers to a cure for HIV: New ways to target and eradicate HIV-1 reservoirs. Lancet. 2013;381(9883):2109–2117. doi:10.1016/S0140-6736(13)60104-X
  • Ho YC, Shan L, Hosmane NN, et al. Replication-competent noninduced proviruses in the latent reservoir increase barrier to HIV-1 cure. Cell. 2013;155(3):540–551.
  • Vrisekoop N, den Braber I, de Boer AB, et al. Sparse production but preferential incorporation of recently produced naive T cells in the human peripheral pool. Proc Natl Acad Sci USA. 2008;105(16):6115–6120.
  • Procopio FA, Fromentin R, Kulpa D et al. A novel assay that precisely measures the size of the latent HIV reservoir reveals that ART-naïve individuals harbour a large pool of latently infected CD4+ T cells. IAS Towards a Cure Symposium, 20th International AIDS conference, 20–25 July, Melbourne 2014.
  • Allard SD, De Keersmaecker B, de Goede AL, et al. A phase I/IIa immunotherapy trial of HIV-1-infected patients with Tat, Rev and Nef expressing dendritic cells followed by treatment interruption. Clin Immunol. 2012;142(3):252–268.
  • Allen TM, O’Connor DH, Jing P, et al. Tat-specific cytotoxic T lymphocytes select for SIV escape variants during resolution of primary viraemia. Nature. 2000;407(6802):386–390.
  • Cao J, McNevin J, Malhotra U, et al. Evolution of CD8+ T cell immunity and viral escape following acute HIV-1 infection. J Immunol. 2003;171(7):3837–3846.
  • Goldstein G, Damiano E, Donikyan M, et al. HIV-1 Tat B-cell epitope vaccination was ineffectual in preventing viral rebound after ART cessation: HIV rebound with current ART appears to be due to infection with new endogenous founder virus and not to resurgence of pre-existing Tat-dependent viremia. Hum Vaccin Immunother. 2012;8(10):1425–1430.
  • Dey SS, Xue Y, Joachimiak MP, et al. Mutual information analysis reveals coevolving residues in Tat that compensate for two distinct functions in HIV-1 gene expression. J Biol Chem. 2012;287(11):7945–7955.
  • Tahirov TH, Babayeva ND, Varzavand K, et al. Crystal structure of HIV-1 Tat complexed with human P-TEFb. Nature. 2010;465(7299):747–751.
  • D’Orso I, Frankel AD. HIV-1 Tat: its dependence on host factors is crystal clear. Viruses. 2010;2(10):2226–2234.
  • Fu W, Sanders-Beer BE, Katz KS, et al. Human immunodeficiency virus type 1, human protein interaction database at NCBI. Nucleic Acids Res. 2009;37(Database issue):417–422.
  • WHO. 2017. Available from: http://www.gaffi.org/wp-content/uploads/WHO-HIV-Adanced-disease-summary-2017.pdf
  • Appay V, Sauce D. Immune activation and inflammation in HIV-1 infection: causes and consequences. J Pathol. 2008;214:231–241.
  • Mocroft A, Reiss P, Gasiorowski J, et al. EuroSIDA Study Group. Serious fatal and nonfatal non-AIDS-defining illnesses in Europe. J Acquir Immune Defic Syndr. 2010 Oct;55(2):262–270. DOI:10.1097/QAI.0b013e3181e9be6b.
  • Häggblom A, Svedhem V, Singh K, et al. Virological failure in patients with HIV-1 subtype C receiving antiretroviral therapy: an analysis of a prospective national cohort in Sweden. The Lancet HIV. 2016;3(4):166–174.
  • Sutherland KA, Collier DA, Claiborne DT, et al. Wide variation in susceptibility of transmitted/founder HIV-1 subtype C Isolates to protease inhibitors and association with in vitro replication efficiency. Sci Rep. 2016;6:38153.
  • Walensky RP, Borre ED, Bekker L-G, et al. Do less harm: evaluating HIV programmatic alternatives in response to cutbacks in foreign aid. Ann Intern Med. 2017. DOI:10.7326/M17-1358.
  • Tshamba HM, Kaut CM, Kyalubile NM, et al. Cost of hospital care for HIV/AIDS infected patients in three general reference hospitals in Lubumbashi, DR Congo: prospective cohort study. Pan Afr Med J. 2013;15:76.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.