298
Views
18
CrossRef citations to date
0
Altmetric
Review

The potential of currently unavailable herpes virus vaccines

, , &
Pages 239-248 | Received 28 Nov 2017, Accepted 05 Jan 2018, Published online: 09 Feb 2018

References

  • Paine TF. Latent herpes simplex virus infection in man. Bact Rev. 1964;28:472–479.
  • Roizman B. An inquiry into the mechanisms of recurrent herpes simplex infections of man. Perspect Virol. 1965;4:283–304.
  • Longnecker R, Kieff E, Cohen JI. Epstein-Barr virus. In: Knipe DM, Howley PM, editors. Field´s virology. 6th ed. Philadelphia: Lippincott Williams and Wilkins; 2013. p. 1898–1959.
  • Thorley-Lawson DA. EBV persistence – introducing the virus. Curr Topics Microbiol Immunol. 2015;390:151–209.
  • Adams A, Landahl T. Epstein-Barr virus genomes with properties of circular DNA molecules in carrier cells. Proc Natl Acad Sci USA. 1975;72:1477–1481.
  • Efstathiou S, Minson AC, Field HJ, et al. Detection of herpes simplex virus specific DNA sequences in latently infected mice and in humans. J Virol. 1986;32:446–455.
  • Kessler HH, Műhlbauer G, Rinner B, et al. Detection of herpes simplex virus DNA by real time PCR. J Clin Microbiol. 2000;38(7):2638–2642.
  • Namvar L, Olofsson S, Bergstrom T, et al. Detection and typing of herpes simplex virus (HSV) in mucocutaneous samples by TaqMan PCR targeting a gB segment homologous for HSV types 1 and 2. J Clin Microbiol. 2005;43:2058–2064.
  • Vályi-Nagy T, Shukla D, Engelhard HH, et al. Latency strategies of alphaherpesviruses: herpes simplex virus and varicella-zoster virus latency in neurons. In: Minarovits J, Gonczol E, Valyi-Nagy T, editors. Latency strategy of herpesviruses. New York: Springer; 2007. p. 1–36.
  • Baer R, Bankier AT, Biggin MD, et al. DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature. 1984;310:207–211.
  • Young LS, Arrand JB, Murray PG. EBV gene expression and regulation. In: Arvin A, Campadelli-Fiume G, Mocarski E, Moore PS, Roizman B, editors. Human herpesviruses: biology, treatment and immunoprophylaxis. Cambridge: Cambridge University Press; 2007. ISBN 0-521-82714-0.
  • Chen T, Hudnall ST. Anatomical mapping of human herpesvirus reservoirs of infection. Mod Pathol. 2006;19:726–737.
  • Wagner EK, Bloom DC. Experimental investigations on herpes simplex virus 1 latency. Clin Microbiol Rev. 1997;10(3):419–443.
  • Preston CM. Repression of viral transcription during herpes simplex virus latency. J Gen Virol. 2000;81:1–19.
  • Fraser NW, Block TM, Spivack J. The latency associated transcripts of herpes simplex virus: RNA and in search of function. Minireview. Virology. 1992;191:1–8.
  • Thompson RL, Sawtel NM. Herpes simplex virus type 1 latency associated transcript gene promotes neuronal survival. J Virol. 2001;75(14):6660–6675.
  • Perng G, Jones C, Ciacci-Zanella H, et al. Virus induced neuronal apoptosis blocked by the herpes simplex virus latency associated transcript (LAT). Science. 2000;287:1500–1503.
  • Perng GH, Maguen B, Jin L, et al. A novel herpes simplex virus type 1 transcript (AL-RNA) antisense to the 5´ end of the latency-associated transcript produces a protein in infected rabbits. J Virol. 2002;76(16):8003–8010.
  • Rickinson A, Kieff E. Epstein–Barr virus. In: Knipe DM, Howley PM, editors. Field´s virology. 4th ed. Philadelphia (PA): Lippincott Williams and Wilkins; 2001. p. 2575–2627.
  • Farell PJ. Epstein-Barr virus strain variation. Curr Topics Microbiol Immunol. 2015;390:45–63.
  • Leight ER, Sugden B. EBNA1: a protein pivotal to latent infection by Epstein-Barr virus. Rev Med Virol. 2000;10:83–100.
  • Niller HH, Minarovits J. Similarities between the Epstein-Barr virus (EBV) nuclear protein EBNA1 and the pioneer transcription factor foxA: is EBNA1 a ‘bookmarking’ oncoprotein that alters the host cell epigenotype? J Pathogens. 2012;1:37–51.
  • Falk KI, Szekely L, Aleman A, et al. Specific methylation patterns in two control regions of Epstein-Barr virus latency: the LMP-1-coding upstream regulatory region and an origin of DNA replication (oriP). J Virol. 1998;72:2969–2974.
  • Minarovits J, Niller HH. Current trends and alternative scenarios in EBV research. In: Minarovits J, Niller HH, editors. Epstein Barr virus: methods and protocols. New York (NY): Humana Press; 2017. p. 1–32.
  • Szenthe K, Koroknai A, Banati F, et al. The 5´regulatory sequences of active miR-146a promoters are hypomethylated and associated with euchromatic histone modification marks in B lymphoid cells. Biochem Biophys Res Commun. 2013;4351:8–15. Epub 2013 Apr 10. DOI:10.1016/j.bbrc.2013.03.127
  • Shoenfeld Y, Agmon-Levin N, Tomljenovits L. Vaccines and immunity. Hoboken, New Jersey: Willey Blackwell; 2016. p. 370.
  • Green MT, Courtney RJ, Dunkel EC. Detection of an immediate early herpes simplex virus polypeptide in trigeminal ganglia from latently infected mice. Infect Immun. 1981;34:987–992.
  • Režuchová I, Kúdelová M, Ďurmanová V, et al. Transcription at early stages of herpes simplex virus 1 infection and during reactivation. Intervirology. 2003;46(1):25–34.
  • Hill TJ, Blyth HJ. An alternative theory of herpes simplex recurrence and a possible role for prostaglandins. Lancet. 1976;1:397–398.
  • Rajčáni J, Ďurmanová V. Early expression of herpes simplex virus (HSV) proteins and reactivation of latent infection. Folia Microbiol. 2000;45(1):7–28.
  • Bystrická M, Russ G. Immunity in latent herpes simplex virus infection. Acta Virol. 2005;49:159–167.
  • Hill TJ, Field HJ, Blyth WA. Acute and recurrent infection with herpes simplex virus in the mouse: a model for studying latency and recurrent disease. J Gen Virol. 1975;28:341–353.
  • Kwon BS, Gangarosa LP, Burch KD, et al. Induction of ocular herpes herpes simplex virus shedding by iontophoresis of epinephrine into rabbit cornea. Invest Ophthalm Vis Sci. 1981;31:442–449.
  • Rajčáni J, Ďurmanová V. Developments in herpes simplex virus vaccines: old problems, new challenges. Folia Microbiol (Praha). 2006;51:67.
  • Nass PH, Elkins KL, Weir JP. Antibody response and protective capacity of plasmid vaccines expressing three different herpes simplex virus glycoproteins. J Infect Dis. 1998;178:611–617.
  • Brehm M, Samaniego LA, Bonneau RH, et al. Immunogenicity of herpes simplex virus type 1 mutants containing deletions in one or more alpha-genes: ICP4, ICP27, ICP22, and ICP0. Virology. 1999;256(2):258–269.
  • Kutinová V, Vonka V, Řezáčová D. Production and some properties of antigen extracts for neutralizing of herpes simplex simplex virus. Acta Virol. 1977;19:189–197.
  • Rajčáni J, Matis J, Kúdelová M, et al. A simple novel procedure for preparation of herpes simplex virus subunit vaccine. Acta Virol. 1988;32:317–328.
  • Rajčáni J, Kutinová L, Vonka V. Restriction of latent herpes virus infection of rabbits immunized with subviral herpes simplex virus vaccine. Acta Virol. 1980;24:183–193.
  • Nesburn AB, Burke RL, Ghiasi H, et al. Vaccine therapy for ocular herpes simplex virus (HSV) infection: periocular vaccination reduces spontaneous ocular HSV Type 1 shedding in latently infected rabbits. J Virol. 1994;68(8):5084–5092.
  • Rajčáni J, Sabó A, Mucha V, et al. Herpes simplex virus type 1 envelope subunit vaccine not only protects against lethal virus challenge, but also may restrict latency and virus reactivation. Acta Virol. 1995;39:37–49.
  • Simms JR, Jennings R, Richardson VJ, et al. Large-scale comparison of experimental adjuvants with herpes simplex virus vaccine reveals a correlation of protection with IgG2a and IgG2b responses. J Med Virol. 2002;68:82–91.
  • Watson RJ, Weis JH, Salstzrom JS, et al. Herpes simplex virus glycoprotein D gene: nucleotide sequence and expression in Escherichia coli. Science. 1982;22:381–383.
  • Montgomery RI, Warner MS, Lum BJ, et al. Herpes simplex virus-1 entry into cells mediated by a novel member of the TNF/NGF receptor family. Cell. 1996;87:427–436.
  • Whitbeck JCH, Perng CH, Lon H, et al. Glycoprotein D of herpes simplex virus (HSV) binds directly to HVEM a member of necrosis receptor subfamily and mediator of HSV entry. J Virol. 1997;71:6083–6093.
  • Krummenmacher C, Nikola AV, Whitbeck JHC, et al. Herpes simplex virus glycoprotein D bind to poliovirus receptor related protein 1 or herpesvirus entry mediator, two structurally unrelated mediators of entry. J Virol. 1998;72:7064–7074.
  • Koppa SJ, Banisad G, Glajch K, et al. Infection of neurons and encephalitis after intracranial inoculation of herpes simplex virus requires the entry receptor nectin-1. PNAS. 2009;106(42):17,916–17,920.
  • Highlander SL, Sutherland SL, Gage PJ, et al. Neutralizing antibodies specific for herpes simplex virus glycoprotein D inhibit virus penetration. J Virol. 1987;61:3356–3364.
  • Nicola AV, Sharon H, Willis SH, et al. Structure-function analysis of soluble forms of herpes simplex virus glycoprotein D. J Virol. 1996;70(6):3815–3822.
  • Ďurmanová V, Adamkov M, Rajčáni J. Herpes simplex 1 and vaccine design. What can we learn from the past? In: Ongrády J, editor. Herpesviridae. Croatia: Intech Rijeka; 2016. p. 177–205.
  • Rajčáni J, Vojvodová A. The role of herpes simplex virus glycoproteins in the virus replication cycle. Acta Virol. 1998;42:103–118.
  • Heber-Katz E, Dietzschold B. Immune response to synthetic herpes simplex virus peptides: the feasibility of a synthetic vaccine. Curr Topics Microbiol Immunol. 1986;130:50–64.
  • Moško T, Košovský J, Režuchová I, et al. Expression of herpes simplex virus glycoprotein D in prokaryotic and eukaryotic cells. Acta Virol. 2004;48:97–108.
  • Ďurmanová V, Moško T, Sapák M, et al. Efficacy of recombinant herpes simplex virus 1 glycoprotein D candidate vaccines in mice. Acta Microbiol Immunol Hung. 2006;53(4):459–477.
  • Nash AT. T cells and the regulation of herpes simplex virus latency and reactivation. J Exp Med. 2000;191(9):1455–1457.
  • BenMohamed L, Bertrand G, Cory D, et al. Identification of novel immunodominant CD4+ Th1-type T-cell peptide epitopes from herpes simplex virus glycoprotein D that confer protective immunity. J Virol. 2003;77(17):9463–9473.
  • Ďurmanová V, Moško M, Sapák M, et al. Immune response and cytokine production following immunization with experimental simplex virus 1 (HSV-1) vaccines. Folia Microbiol (Praha). 2008;53(1):73–83.
  • Smiley JR. Herpes simplex virus virion host shutoff protein: immune evasion mediated by a viral RNase? J Virol. 2004;78(3):1063–1068.
  • Rajčáni J, Kúdelová M, Oravcová I, et al. Characterization of strain HSZP of herpes simplex virus type 1 (HSV1). Folia Microbiol. 1999;44(6):713–719.
  • Muggeridge MI, Granthama ML, Johnson FB. Identification of syncytial mutations in a clinical isolate of herpes simplex virus 2. Virology. 2004;328:244–253.
  • Brans R, Yao F. Immunization with a recombinant herpes simplex virus (HSV) type 1 protects against HSV-2 genital disease in guinea pigs. BMC Microbiol. 2010;10:163.
  • Mertz GJ, Peterman R, Ashley R, et al. Herpes simplex virus type-2 glycoprotein-subunit vaccine: tolerance and humoral and cellular responses in humans. J Infect Dis. 1984;150:242–249.
  • Garnett GP, Dubin G, Slaoui M, et al. The potential epidemiological impact of a genital herpes vaccine for women. Sex Transm Infect. 2004;80:24–29. DOI:10.1136/sti.2002.003848
  • Cappel R, Sprecher S, deCuyper F, et al. Clinical efficacy of a herpes simplex subunit vaccine. J Med Virol. 1985;16:137–145.
  • Dundarov S, Andonov P. Seventeen years of application of herpes vaccines in Bulgaria. Acta Virol. 1994;38:205–208.
  • Skinner GRB, Fink CG, Cowan M, et al. Follow-up report on 50 subjects vaccinated against herpes genitalis with Skinner vaccine. Med Microbiol Immunol. 1987;176:161–168.
  • Rupp R, Rosenthal SL, Stanberry LR. Pediatrics and herpes simplex virus vaccines. Semin Pediatr Infect Dis. 2005;16(1):31–37.
  • Ashley R, Mertz GJ, Corey L. Detection of asymptomatic herpes simplex virus infections after vaccination. J Virol. 1987;61:264–268.
  • Deshpande SP, Kumaraguru U, Rouse BT. Why do we lack an effective vaccine against herpes simplex virus infections? Microbes Infect. 2000;2:973−978.
  • Kemble G, Spaete R. Herpesvirus vaccines. In: Arvin A, Campadelli-Fiume G, Mocarski E, Moore PS, Roizman B, editors. Human herpesviruses: biology, therapy and immuno-prophylaxis. Cambridge: Cambridge University Press; 2007. p. 1253–1261. ISBN 0-521-82714-0.
  • Stanberry L. Clinical trials of prophylactic and therapeutic herpes simplex virus vaccines. Herpes. 2004;11(Supplement 3):161A–169A.
  • Cattamanchi A, Posavad CM, Wald A, et al. Phase I study of a herpes simplex virus type 2 (HSV-2) DNA vaccine administered to healthy, HSV-2-seronegative adults by a needle-free injection system. Clin Vaccine Immunol. 2008;15(11):1638–1643.
  • Straus SE, Corey L, Burke RL, et al. Placebo-controlled trial of vaccination with recombinant glycoprotein D of herpes simplex virus type 2 for immunotherapy of genital herpes. Lancet. 1994;343(8911):1460–1463.
  • Aurelian L. Herpes simplex virus type 2 vaccines: new ground for optimism? Clin Diagn Lab Immunol. 2004;11(3):437–445.
  • Rajčáni J, Szenthe K, Banati F, et al. Survey of Epstein Barr virus (EBV) immunogenic proteins and their epitopes: implications for vaccine preparation. Recent Patents Anti-Infection Drug Discov. 2014;9:62–76.
  • Sashihara J, Burbelo PD, Savoldo B, et al. Human antibody titers to Epstein-Barr virus (EBV) gp350 correlate with neutralization of infectivity better than antibody titers to EBV gp42 using a rapid flow cytometry-based EBV neutralization assay. Virology. 2009;391(2):249–256.
  • Finerty S, Tarlton J, Mackett M, et al. Protective immunization against Epstein-Barr virus-induced disease in cottontop tamarins using the virus envelope glycoprotein gp340 produced from a bovine papillomavirus expression vector. J Gen Virol. 1992;73:449–453.
  • Rajčáni J, Szenthe K, Ďurmanová V, et al. Epstein-Barr virus (HHV-4) inoculation to rabbits by intranasal and oral routes results in subacute and/or persistent infection dissimilar to human disease. Intervirology. 2014;57:254–269.
  • Niller HH, Banati F, Salamon D, et al. epigenetic alterations in Epstein-Barr virus-associated diseases. Adv Exp Med Biol. 2016;879:39–69.
  • Cohen JI, Mocarski ES, Raab-Traub N, et al. The need and challenges for development of an Epstein-Barr virus vaccine. Vaccine. 2013;315:B194–6.
  • Delbende CD, Verwaerde C, Mougel A, et al. Induction of therapeutic antibodies by vaccination against external loops of tumor-associated viral latent membrane protein. J Virol. 2009;83(22):11734–11745.
  • Gewurz BE, Vyas JM, Ploegh HI. Herpesvirus evasion of T cell immunity. In: Arvin A, Campadelli-Fiume G, Mocarski E, et al., editors. Human herpesviruses: biology, therapy and immunoprophylaxis. Cambridge: Cambridge University Press; 2007. p. 1117–1136. (ISBN 0-521-82714-0).
  • Khanna R, Burrows SR, Moss DJ, et al. Peptide transporter (TAP-1 and TAP-2)-independent endogenous processing of Epstein-Barr virus (EBV) latent membrane protein 2A: implications for cytotoxic T-lymphocyte control of EBV-associated malignancies. J Virol. 1996;70:5357–5362.
  • Söllner J, Grohmann R, Rapberger R, et al. Analysis and prediction of protective continuous B-cell epitopes on pathogen proteins. Immunome Res. 2008;4:1.
  • Toka FN, Pack CD, Rouse BR. Molecular adjuvants for mucosal immunity. Immunol Rev. 2004;199:100–112.
  • Rajčáni J, Szenthe K, Bánáti F, et al. The use of rabbit model for the efficacy of a novel Epstein-Barr virus (EBV) peptide vaccine. J Immunol Clin Res. 2016;3(1):1028–1039.
  • Takahashi M. Clinical overview of varicella vaccine: development and early studies. Pediatrics. 1986;78:736–741.
  • Gershon AA, Steinberg SP. Live attenuated varicella vaccine: protection in healthy adults compared with leukemic children. NIAID Varicella Vaccine Collaborative Study Group. Infect Dis. 1992;166(Suppl1):S63–S68.
  • Gershon A. Varicella zoster vaccine. In: Arvin A, Campadelli-Fiume G, Mocarski E, et al., editors. Human herpesviruses: biology, therapy and immunoprophylaxis. Cambridge: Cambridge University Press; 2007. p. 1117–1136.
  • Murphy FA, Gibbs EPJ, Horzinek MC, et al. Veterinary virology, Herpesviridae. San Diego, London, Boston, New York, Sydney, Tokyo, Toronto: Academic Press; 1999. p. 301–326. (ISBN 012-511340-4).
  • Woźniakowski G, Samorek-Salamonowicz E, Kozdruń W. Sequence analysis of meq oncogene among Polish strains of Marek’s disease. Pol J Vet Sci. 2010;13(2):263–267.
  • Woźniakowski G, Samorek-Salamonowicz E. First survey of the occurrence of duck enteritis virus (DEV) in free-ranging Polish water birds. Arch Virol. 2014;159(6):439–1444.
  • Shoenfeld Y, Agmon-Levin N. ‘ASIA’ – autoimmune/inflammatory syndrome induced by adjuvants. J Autoimmun. 2011;36:4–8.
  • Stevenson PG, Simas JP, Efstathiou S. Immune control of mammalian gamma-herpesviruses: lessons from murid herpesvirus-4. J Gen Virol. 2009;90:2317–2330.
  • Post LE, Roizman B. A generalized technique for deletion of specific genes in large genomes: alpha gene 22 of herpes simplex virus 1 is not essential for growth. Cell. 1981;25:227–232.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.