306
Views
7
CrossRef citations to date
0
Altmetric
Original Research

Navigating to the most promising directions amid complex fields of vaccine development: a chlamydial case study

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1323-1337 | Received 15 Mar 2019, Accepted 26 Nov 2019, Published online: 10 Dec 2019

References

  • Newman L, Rowley J, Vander Hoorn S, et al. Global estimates of the prevalence and incidence of four curable sexually transmitted infections in 2012 based on systematic review and global reporting. PloS One. 2015;10(12):e0143304.
  • Owusu-Edusei K Jr, Chesson HW, Gift TL, et al. The estimated direct medical cost of selected sexually transmitted infections in the United States, 2008. Sex Transm Dis. 2013;40(3):197–201.
  • Brunham RC, Rey-Ladino J. Immunology of Chlamydia infection: implications for a Chlamydia trachomatis vaccine. Nat Rev Immunol. 2005;5(2):149.
  • Burton MJ, Mabey DC. The global burden of trachoma: a review. PLoS Negl Trop Dis. 2009;3(10):e460.
  • Murray CJ, Vos T, Lozano R, et al. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: a systematic analysis for the global burden of disease study 2010. Lancet. 2012;380(9859):2197–2223.
  • Gottlieb SL, Low N, Newman LM, et al. Toward global prevention of sexually transmitted infections (STIs): the need for STI vaccines. Vaccine. 2014;32(14):1527–1535.
  • Brunham RC, Rappuoli R. Chlamydia trachomatis control requires a vaccine. Vaccine. 2013;31(15):1892–1897.
  • Hosenfeld CB, Workowski KA, Berman S, et al. Repeat infection with Chlamydia and gonorrhea among females: a systematic review of the literature. Sex Transm Dis. 2009;36(8):478–489.
  • Longbottom D, Livingstone M. Vaccination against chlamydial infections of man and animals. Vet J. 2006;171(2):263–275.
  • Rockey DD, Wang J, Lei L, et al. Chlamydia vaccine candidates and tools for chlamydial antigen discovery. Expert Rev Vaccines. 2009;8(10):1365–1377.
  • Vasilevsky S, Greub G, Nardelli-Haefliger D, et al. Genital Chlamydia trachomatis: understanding the roles of innate and adaptive immunity in vaccine research. Clin Microbiol Rev. 2014;27(2):346–370.
  • de la Maza LM, Zhong G, Brunham RC. Update in Chlamydia trachomatis vaccinology. Clin Vaccin Immunol. 2017;24(4):1-25.
  • Phillips S, Quigley BL, Timms P. Seventy years of Chlamydia vaccine research–limitations of the past and directions for the future. Front Microbiol. 2019;10(70):1-18.
  • Farris CM, Morrison RP. Vaccination against Chlamydia genital infection utilizing the murine C. muridarum model. Infect Immun. 2011;79(3):986–996.
  • Morrison RP, Caldwell HD. Immunity to murine chlamydial genital infection. Infect Immun. 2002;70(6):2741–2751.
  • Tang FF, Huang YT, Chang HL, et al. Further studies on the isolation of the trachoma virus. Acta Virol. 1958;2(3):164–170.
  • T’ang FF, Chang HL, Huang Y. Studies on the etiology of trachoma with special reference to isolation of the virus in chick embryo. Chin Med J (Engl). 1957;75(6):429–447.
  • Mabey DC, Hu V, Bailey RL, et al. Towards a safe and effective chlamydial vaccine: lessons from the eye. Vaccine. 2014;32(14):1572–1578.
  • Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 2009;151(4):264–269.
  • Grayston JT, Wang S. New knowledge of chlamydiae and the diseases they cause. J Infect Dis. 1975;132(1):87–105.
  • Borenstein M, Hedges LV, Higgens JP, et al. Introduction to meta-analysis. Chichester, West Sussex: John Wiley & Sons, Ltd; 2009.
  • Bommana S, Walker E, Desclozeaux M, et al. Humoral immune response against two surface antigens of Chlamydia pecorum in vaccinated and naturally infected sheep. PloS One. 2017;12(11):e0188370.
  • Higgins JG, S, editor. Cochrane handbook for systematic reviews of interventions. Chichester, West Sussex: John Wiley & Sons Ltd; 2008.
  • Fairley SJ, Singh SR, Yilma AN, et al. Chlamydia trachomatis recombinant MOMP encapsulated in PLGA nanoparticles triggers primarily T helper 1 cellular and antibody immune responses in mice: a desirable candidate nanovaccine. Int J Nanomedicine. 2013;8:2085.
  • Koroleva EA, Kobets NV, Shcherbinin DN, et al. Chlamydial type III secretion system needle protein induces protective immunity against Chlamydia muridarum intravaginal infection. Biomed Res Int. 2017;2017. DOI:10.1155/2017/3865802
  • Bandholtz L, Kreuger M, Svanholm C, et al. Adjuvant modulation of the immune responses and the outcome of infection with Chlamydia pneumoniae. Clin Exp Immunol. 2002;130(3):393–403.
  • Hedges LV. Distribution theory for glass’s estimator of effect size and related estimators. J Educ Stat. 1981;6(2):107–128.
  • Viechtbauer W. Conducting meta-analyses in R with the metafor package. J Stat Softw. 2010;36:3.
  • Team RC. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2017.
  • Egger M, Smith GD, Schneider M, et al. Bias in meta-analysis detected by a simple, graphical test. Bmj. 1997;315(7109):629–634.
  • Sterne JA, Egger M. Regression methods to detect publication and other bias in meta-analysis. In: Rothstein HR, Sutton AJ, Borenstein M, editors. Publication bias in meta-analysis: prevention, assessment and adjustments. Chichester, West Sussex: John Wiley & Sons; 2005. p. 99–110.
  • Lu CX, Zeng H, Li ZH, et al. Protective immunity against mouse upper genital tract pathology correlates with high IFN gamma but low IL-17 T cell and anti-secretion protein antibody responses induced by replicating chlamydial organisms in the airway. Vaccine. 2012 Jan;30(2):475–485. PubMed PMID: WOS:000299971800051.
  • Jiang X, Shen C, Rey-Ladino J, et al. Characterization of murine dendritic cell line JAWS II and primary bone marrow-derived dendritic cells in Chlamydia muridarum antigen presentation and induction of protective immunity. Infect Immun. 2008;76(6):2392–2401.
  • Stary G, Olive A, Radovic-Moreno AF, et al. A mucosal vaccine against Chlamydia trachomatis generates two waves of protective memory T cells. Science. 2015; 348(6241):aaa8205-1-aaa8205-14.
  • Whittum-Hudson JA, An -L-L, Saltzman WM, et al. Oral immunization with an anti–idiotypic antibody to the exoglycolipid antigen protects against experimental Chlamydia trachomatis infection. Nat Med. 1996;2(10):1116.
  • Igietseme JU, Murdin A. Induction of protective immunity against Chlamydia trachomatis genital infection by a vaccine based on major outer membrane protein-lipophilic immune response-stimulating complexes. Infect Immun. 2000 Dec;68(12):6798–6806. PubMed PMID: WOS:000167020000040.
  • Lunn T, Munks S, Carver S. The impacts of timber harvesting on stream biota–an expanding field of heterogeneity. Biol Conserv. 2017;213:154–166.
  • Hofmann SG, Sawyer AT, Witt AA, et al. The effect of mindfulness-based therapy on anxiety and depression: a meta-analytic review. J Consult Clin Psychol. 2010;78(2):169.
  • Shaw AC, Vandahl BB, Larsen MR, et al. Characterization of a secreted Chlamydia protease. Cell Microbiol. 2002;4(7):411–424.
  • Zhong G, Fan P, Ji H, et al. Identification of a chlamydial protease–like activity factor responsible for the degradation of host transcription factors. J Exp Med. 2001;193(8):935–942.
  • Chaganty BK, Murthy AK, Evani SJ, et al. Heat denatured enzymatically inactive recombinant chlamydial protease-like activity factor induces robust protective immunity against genital chlamydial challenge. Vaccine. 2010;28(11):2323–2329.
  • Li W, Guentzel MN, Seshu J, et al. Induction of cross-serovar protection against genital chlamydial infection by a targeted multisubunit vaccination approach. Clin Vaccine Immunol. 2007;14(12):1537–1544.
  • Tan M, Sütterlin C. The Chlamydia protease CPAF: caution, precautions and function. Pathog Dis. 2014;72(1):7–9.
  • Caldwell HD, Kromhout J, Schachter J. Purification and partial characterization of the major outer membrane protein of Chlamydia trachomatis. Infect Immun. 1981;31(3):1161–1176.
  • Nikaido H. Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev. 2003;67(4):593–656.
  • Sun G, Pal S, Sarcon AK, et al. Structural and functional analyses of the major outer membrane protein of Chlamydia trachomatis. J Bacteriol. 2007;189(17):6222–6235.
  • Hafner L, Beagley K, Timms P. Chlamydia trachomatis infection: host immune responses and potential vaccines. Mucosal Immunol. 2008;1(2):116.
  • Beatty WL, Byrne GI, Morrison RP. Morphologic and antigenic characterization of interferon gamma-mediated persistent Chlamydia trachomatis infection in vitro. Proc Nat Acad Sci. 1993;90(9):3998–4002.
  • Beatty WL, Belanger TA, Desai AA, et al. Tryptophan depletion as a mechanism of gamma interferon-mediated chlamydial persistence. Infect Immun. 1994;62(9):3705–3711.
  • Leonhardt RM, Lee S-J, Kavathas PB, et al. Severe tryptophan starvation blocks onset of conventional persistence and reduces reactivation of Chlamydia trachomatis. Infect Immun. 2007;75(11):5105–5117.
  • Pal S, Tifrea DF, Follmann F, et al. The cationic liposomal adjuvants CAF01 and CAF09 formulated with the major outer membrane protein elicit robust protection in mice against a Chlamydia muridarum respiratory challenge. Vaccine. 2017;35(13):1705–1711.
  • Pal S, Favaroni A, Tifrea DF, et al. Comparison of the nine polymorphic membrane proteins of Chlamydia trachomatis for their ability to induce protective immune responses in mice against a C. muridarum challenge. Vaccine. 2017;35(19):2543–2549.
  • Cheng C, Pal S, Tifrea D, et al. A vaccine formulated with a combination of TLR-2 and TLR-9 adjuvants and the recombinant major outer membrane protein elicits a robust immune response and significant protection against a Chlamydia muridarum challenge. Microbes Infect. 2014;16(3):244–252.
  • Cheng C, Bettahi I, Cruz-Fisher MI, et al. Induction of protective immunity by vaccination against Chlamydia trachomatis using the major outer membrane protein adjuvanted with CpG oligodeoxynucleotide coupled to the nontoxic B subunit of cholera toxin. Vaccine. 2009;27(44):6239–6246.
  • Chang HL, Chin HY, Wang KC. Experimental studies on trachoma vaccine in monkeys. Chin Med J (Engl). 1964;83(11):755–762. PubMed PMID: WOS:A19646117900006.
  • Collier L, Blyth W. Immunogenicity of experimental trachoma vaccines in baboons: II. Experiments with adjuvants, and tests of cross-protection. Epidemiol Infect. 1966;64(4):529–544.
  • Bulir DC, Liang S, Lee A, et al. Immunization with chlamydial type III secretion antigens reduces vaginal shedding and prevents fallopian tube pathology following live C. muridarum challenge. Vaccine. 2016 Jul;34(34):3979–3985. PubMed PMID: WOS:000380604000011.
  • Brunham R, Kuo C, Cles L, et al. Correlation of host immune response with quantitative recovery of Chlamydia trachomatis from the human endocervix. Infect Immun. 1983;39(3):1491–1494.
  • Darville T, Hiltke TJ. Pathogenesis of genital tract disease due to Chlamydia trachomatis. J Infect Dis. 2010;201(S2):S114–S125.
  • Sharma J, Bosnic AM, Piper JM, et al. Human antibody responses to a Chlamydia-secreted protease factor. Infect Immun. 2004;72(12):7164–7171.
  • Sharma J, Dong F, Pirbhai M, et al. Inhibition of proteolytic activity of a chlamydial proteasome/protease-like activity factor by antibodies from humans infected with Chlamydia trachomatis. Infect Immun. 2005;73(7):4414–4419.
  • Starnbach MN. Action needed on Chlamydia vaccines. Trends Microbiol. 2018;26(8):639–640.
  • Abraham S, Juel HB, Bang P, et al. Safety and immunogenicity of the Chlamydia vaccine candidate CTH522 adjuvanted with CAF01 liposomes or aluminium hydroxide: a first-in-human, randomised, double-blind, placebo-controlled, phase 1 trial. Lancet Infect Dis. 2019;19(10):1091–1100.
  • Olsen AW, Follmann F, Erneholm K, et al. Protection against Chlamydia trachomatis infection and upper genital tract pathological changes by vaccine-promoted neutralizing antibodies directed to the VD4 of the major outer membrane protein. J Infect Dis. 2015;212(6):978–989.
  • Lorenzen E, Follmann F, Boje S, et al. Intramuscular priming and intranasal boosting induce strong genital immunity through secretory IgA in minipigs infected with Chlamydia trachomatis. Front Immunol. 2015 Dec;6(628). PubMed PMID: WOS:000366842500001. DOI:10.3389/fimmu.2015.00528
  • Boje S, Olsen AW, Erneholm K, et al. A multi-subunit Chlamydia vaccine inducing neutralizing antibodies and strong IFN-gamma(+) CMI responses protects against a genital infection in minipigs. Immunol Cell Biol. 2016 Feb;94(2):185–195. PubMed PMID: WOS:000369694100012.
  • Kuczkowska K, Myrbraten I, Overland L, et al. Lactobacillus plantarum producing a Chlamydia trachomatis antigen induces a specific IgA response after mucosal booster immunization. Plos One. 2017 May;12(5):e0176401. PubMed PMID: WOS:000400647000050.
  • Olsen AW, Lorenzen EK, Rosenkrands I, et al. Protective effect of vaccine promoted neutralizing antibodies against the intracellular pathogen Chlamydia trachomatis. Front Immunol. 2017 Dec;8. PubMed PMID: WOS:000417588700001. DOI:10.3389/fimmu.2017.01652
  • Wern JE, Sorensen MR, Olsen AW, et al. Simultaneous subcutaneous and intranasal administration of a CAF01-adjuvanted Chlamydia vaccine elicits elevated IgA and protective Th1/Th17 responses in the genital tract. Front Immunol. 2017 May;8. PubMed PMID: WOS:000401473700001. DOI:10.3389/fimmu.2017.00569
  • Gottlieb SL, Deal CD, Giersing B, et al. The global roadmap for advancing development of vaccines against sexually transmitted infections: update and next steps. Vaccine. 2016;34(26):2939–2947.
  • Burton DR. Advancing an HIV vaccine; advancing vaccinology. Nat Rev Immunol. 2019;19(2):77–78.
  • Buendia AJ, Ortega N, Caro MR, et al. B cells are essential for moderating the inflammatory response and controlling bacterial multiplication in a mouse model of vaccination against Chlamydophila abortus infection. Infect Immun. 2009 Nov;77(11):4868–4876. PubMed PMID: WOS:000270885800018.
  • Longbottom D, Sait M, Livingstone M, et al. Genomic evidence that the live Chlamydia abortus vaccine strain 1B is not attenuated and has the potential to cause disease. Vaccine. 2018;36(25):3593–3598.
  • Caro MR, Buendia AJ, Ortega N, et al. Influence of the Th2 immune response established by Nippostrongylus brasiliensis infection on the protection offered by different vaccines against Chlamydophila abortus infection. Vet Res Commun. 2005 Mar;29:51–59. PubMed PMID: WOS:000229482500006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.