1,062
Views
16
CrossRef citations to date
0
Altmetric
Review

Advances in influenza virus-like particles bioprocesses

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1285-1300 | Received 11 Jul 2019, Accepted 09 Dec 2019, Published online: 29 Dec 2019

References

  • Gerdil C. The annual production cycle for influenza vaccine. Vaccine. 2003;21(16):1776–1779.
  • Kang S-M, Song J-M, Quan F-S, et al. Influenza vaccines based on virus-like particles. Virus Res. 2009;143(2):140–146.
  • Haynes JR. Influenza virus-like particle vaccines. Expert Rev Vaccines. 2012;7(4):435–445.
  • Lee Y-T, Kim K-H, Ko E, et al. New vaccines against influenza virus. Clin Exp Vaccine Res. 2014;3(1):12.
  • Quan F-S, Lee Y-T, Kim K-H, et al. Progress in developing virus-like particle influenza vaccines. Expert Rev Vaccines. 2016;15(10):1281–1293.
  • Landry N, Pillet S, Favre D, et al. Influenza virus-like particle vaccines made in Nicotiana benthamiana elicit durable, poly-functional and cross-reactive T cell responses to influenza HA antigens. Clin Immunol. 2014;154(2):164–177.
  • Valero-Pacheco N, Pérez-Toledo M, Villasís-Keever MÁ, et al. Antibody persistence in adults two years after vaccination with an H1N1 2009 pandemic influenza virus-like particle vaccine. PLoS One. 2016;11(2):1–13.
  • López-Macías C, Ferat-Osorio E, Tenorio-Calvo A, et al. Safety and immunogenicity of a virus-like particle pandemic influenza A (H1N1) 2009 vaccine in a blinded, randomized, placebo-controlled trial of adults in Mexico. Vaccine. 2011;29(44):7826–7834.
  • Pillet S, Aubin É, Trépanier S, et al. A plant-derived quadrivalent virus like particle influenza vaccine induces cross-reactive antibody and T cell response in healthy adults. Clin Immunol. 2016;168:72–87.
  • Genzel Y, Reichl U. Continuous cell lines as a production system for influenza vaccines. Expert Rev Vaccines. 2009;8(12):1681–1692.
  • Aucoin MG, Mena JA, Kamen AA. Bioprocessing of Baculovirus Vectors. Curr Gene Ther. 2010;10:174–186.
  • Vicente T, Roldão A, Peixoto C, et al. Large-scale production and purification of VLP-based vaccines. J Invertebr Pathol. 2011;107:S42–8.
  • Palmberger D, Wilson IBH, Berger I, et al. SweetBac: a new approach for the production of mammalianised glycoproteins in insect cells. PLoS One. 2012;7(4):e34226.
  • Wilde M, Klausberger M, Palmberger D, et al. Tnao38, high five and Sf9–evaluation of host-virus interactions in three different insect cell lines: baculovirus production and recombinant protein expression. Biotechnol Lett. 2014;36(4):743–749.
  • Latham T, Galarza JM. Formation of wild-type and chimeric influenza virus-like particles following simultaneous expression of only four structural proteins. J Virol. 2001;75(13):6154–6165.
  • Lua LHL, Connors NK, Sainsbury F, et al. Bioengineering virus-like particles as vaccines. Biotechnol Bioeng. 2014;111(3):425–440.
  • Palmberger D, Klausberger M, Berger I, et al. MultiBac turns sweet. Bioengineered. 2013;4(2):78–83.
  • Hu Y-C, Yao K, Wu T-Y. Baculovirus as an expression and/or delivery vehicle for vaccine antigens. Expert Rev Vaccines. 2008;7(3):363–371.
  • Lin S-Y, Chung Y-C, Hu Y-C. Update on baculovirus as an expression and/or delivery vehicle for vaccine antigens. Expert Rev Vaccines. 2014;13(12):1501–1521.
  • Pushko P, Tumpey TM, Bu F, et al. Influenza virus-like particles comprised of the HA, NA, and M1 proteins of H9N2 influenza virus induce protective immune responses in BALB/c mice. Vaccine. 2005;23(50):5751–5759.
  • Margine I, Martinez-Gil L, Chou -Y-Y, et al. Residual baculovirus in insect cell-derived influenza virus-like particle preparations enhances immunogenicity. PLoS One. 2012;7(12):e51559.
  • Monteiro F, Bernal V, Alves PM. The role of host cell physiology in the productivity of the baculovirus-insect cell system: fluxome analysis of Trichoplusia ni and Spodoptera frugiperda cell lines. Biotechnol Bioeng. 2016;114(3):674–684.
  • Krammer F, Schinko T, Palmberger D, et al. Trichoplusia ni cells (High Five) are highly efficient for the production of influenza A virus-like particles: a comparison of two insect cell lines as production platforms for influenza vaccines. Mol Biotechnol. 2010;45(3):226–234.
  • Klausberger M, Wilde M, Palmberger D, et al. One-shot vaccination with an insect cell-derived low-dose influenza A H7 virus-like particle preparation protects mice against H7N9 challenge. Vaccine. 2014;32(3):355–362.
  • Fernandes F, Teixeira AP, Carinhas N, et al. Insect cells as a production platform of complex virus-like particles. Expert Rev Vaccines. 2013;12(2):225–236.
  • Bleckmann M, Schürig M, Chen FF, et al. Identification of essential genetic baculoviral elements for recombinant protein expression by transactivation in Sf21 insect cells. PLoS One. 2016;11(3):1–19.
  • Shen X, Hacker DL, Baldi L, et al. Virus-free transient protein production in Sf9 cells. J Biotechnol. 2013;171(1):61–70.
  • Shen X, Pitol AK, Bachmann V, et al. A simple plasmid-based transient gene expression method using High Five cells. J Biotechnol. 2015;216:67–75.
  • Hong GP, Park JH, Lee HH, et al. Production of influenza virus-like particles from stably transfected Trichoplusia ni BT1 TN-5B1-4 cells. Biotechnol Bioprocess Eng. 2015;20(3):506–514.
  • Sequeira DP, Correia R, Carrondo MJT, et al. Combining stable insect cell lines with baculovirus-mediated expression for multi-HA influenza VLP production. Vaccine. 2017;9(October):107316.
  • Lai JCC, Chan WWL, Kien FF, et al. Formation of virus-like particles from human cell lines exclusively expressing influenza neuraminidase. J Gen Virol. 2010;91(Pt 9):2022–2030.
  • Easterbrook JD, Schwartzman LM, Gao J, et al. Protection against a lethal H5N1 influenza challenge by intranasal immunization with virus-like particles containing 2009 pandemic H1N1 neuraminidase in mice. Virology. 2012;432(1):39–44.
  • Zhang L, Lu J, Chen Y, et al. Characterization of humoral responses induced by an H7N9 influenza virus-like particle vaccine in BALB/C Mice. Viruses. 2015;7(8):4369–4384.
  • Szécsi J, Gabriel G, Edfeldt G, et al. DNA vaccination with a single-plasmid construct coding for viruslike particles protects mice against infection with a highly pathogenic avian influenza A virus. J Infect Dis. 2009;200(2):181–190.
  • Chlanda P, Schraidt O, Kummer S, et al. Structural analysis of the roles of influenza A virus membrane-associated proteins in assembly and morphology. J Virol. 2015;89(June):JVI.00592–15.
  • Chen BJ, Leser GP, Morita E, et al. Influenza virus hemagglutinin and neuraminidase, but not the matrix protein, are required for assembly and budding of plasmid-derived virus-like particles. J Virol. 2007;81(13):7111–7123.
  • Yang J-R, Chen C-Y, Kuo C-Y, et al. A novel H6N1 virus-like particle vaccine induces long-lasting cross-clade antibody immunity against human and avian H6N1 viruses. Antiviral Res. 2016;126:8–17.
  • Tang X-C, Lu H-R, Ross TM. Baculovirus-produced influenza virus-like particles in mammalian cells protect mice from lethal influenza challenge. Viral Immunol. 2011;24(4):311–319.
  • Wu C-Y, Yeh Y-C, Yang Y-C, et al. Mammalian expression of virus-like particles for advanced mimicry of authentic influenza virus. PLoS One. 2010;5(3):e9784.
  • Schmeisser F, Adamo JE, Blumberg B, et al. Production and characterization of mammalian virus-like particles from modified vaccinia virus Ankara vectors expressing influenza H5N1 hemagglutinin and neuraminidase. Vaccine. 2012;30(23):3413–3422.
  • Wang D, Harmon A, Jin J, et al. The lack of an inherent membrane targeting signal is responsible for the failure of the matrix (M1) protein of influenza A virus to bud into virus-like particles. J Virol. 2010;84(9):4673–4681.
  • Le Ru A, Jacob D, Transfiguracion J, et al. Scalable production of influenza virus in HEK-293 cells for efficient vaccine manufacturing. Vaccine. 2010;28(21):3661–3671.
  • Venereo-Sanchez A, Gilbert R, Simoneau M, et al. Hemagglutinin and neuraminidase containing virus-like particles produced in HEK-293 suspension culture: an effective influenza vaccine candidate. Vaccine. 2016;34(29):3371–3380.
  • Thompson CM, Petiot E, Mullick A, et al. Critical assessment of influenza VLP production in Sf9 and HEK293 expression systems. BMC Biotechnol. 2015;15(1):31.
  • Szécsi J, Boson B, Johnsson P, et al. Induction of neutralising antibodies by virus-like particles harbouring surface proteins from highly pathogenic H5N1 and H7N1 influenza viruses. Virol J. 2006;3:70.
  • Tom R, Bisson L, Durocher Y. Transfection of HEK293-EBNA1 cells in suspension with linear PEI for production of recombinant proteins. Cold Spring Harb Protoc. 2008;3(3):1–5.
  • Ansorge S, Lanthier S, Transfiguracion J, et al. Development of a scalable process for high-yield lentiviral vector production by transient transfection of HEK293 suspension cultures. J Gene Med. 2009;11(10):868–876.
  • Hsu CS, Ho YC, Wang KC, et al. Investigation of optimal transduction conditions for baculovirus-mediated gene delivery into mammalian cells. Biotechnol Bioeng. 2004;88(1):42–51.
  • Krammer F, Grabherr R. Alternative influenza vaccines made by insect cells. Trends Mol Med. 2010;16(7):313–320.
  • Chen CY, Lin CY, Chen GY, et al. Baculovirus as a gene delivery vector: recent understandings of molecular alterations in transduced cells and latest applications. Biotechnol Adv. 2011;29(6):618–631.
  • Kanagarajan S, Tolf C, Lundgren A, et al. Transient expression of hemagglutinin antigen from low pathogenic avian influenza A (H7N7) in Nicotiana benthamiana. PLoS One. 2012;7(3):e33010.
  • Saxena P, Lomonossoff G. Production of virus-like particles in plants. In: Viral Nanotechnol. CRC Press. 2015;251–262.
  • D’Aoust M-A, Lavoie P-O, Couture MM-J, et al. Influenza virus-like particles produced by transient expression in Nicotiana benthamiana induce a protective immune response against a lethal viral challenge in mice. Plant Biotechnol J. 2008;6(9):930–940.
  • D’Aoust M-A, Couture MM-J, Charland N, et al. The production of hemagglutinin-based virus-like particles in plants: a rapid, efficient and safe response to pandemic influenza. Plant Biotechnol J. 2010;8(5):607–619.
  • Nayak DP, Balogun RA, Yamada H, et al. Influenza virus morphogenesis and budding. Virus Res. 2009;143(2):147–161.
  • Rossman JS, Lamb RA. Influenza virus assembly and budding. Virology. 2011;411(2):229–236.
  • Sokolenko S, George S, Wagner A, et al. Co-expression vs. co-infection using baculovirus expression vectors in insect cell culture: benefits and drawbacks. Biotechnol Adv. 2012;30(3):766–781.
  • Eibl R, Steiger N, Wellnitz S, et al. Fast single-use VLP vaccine productions based on insect cells and the baculovirus expression vector system: influenza as case study. In: Eibl R. (eds) Disposable Bioreactors II. Advances in Biochemical Engineering/Biotechnology, vol 138. Springer, Berlin, Heidelberg; 2013. p. 99–125.
  • Choi JG, Kim MC, Kang HM, et al. Protective efficacy of baculovirus-derived influenza virus-like particles bearing H5 HA alone or in combination with M1 in chickens. Vet Microbiol. 2013;162(2–4):623–630.
  • Chen Q, Lai H. Plant-derived virus-like particles as vaccines. Hum Vaccin Immunother. 2013;9(1):26–49.
  • Choi HJ, Song JM, Bondy BJ, et al. Effect of osmotic pressure on the stability of whole inactivated influenza vaccine for coating on microneedles. PLoS One. 2015;10(7):1–22.
  • Jutras PV, D’Aoust MA, Couture MM, et al. Modulating secretory pathway pH by proton channel co-expression can increase recombinant protein stability in plants. Biotechnol J. 2015;10(9):1478–1486.
  • Tretyakova I, Hidajat R, Hamilton G, et al. Preparation of quadri-subtype influenza virus-like particles using bovine immunodeficiency virus gag protein. Virology. 2016;487:163–171.
  • Kapczynski DR, Tumpey TM, Hidajat R, et al. Vaccination with virus-like particles containing H5 antigens from three H5N1 clades protects chickens from H5N1 and H5N8 influenza viruses. Vaccine. 2016;34(13):1–7.
  • Quan FS, Steinhauer D, Huang C, et al. A bivalent influenza VLP vaccine confers complete inhibition of virus replication in lungs. Vaccine. 2008;26(26):3352–3361.
  • Quan F-S, Huang C, Compans RW, et al. Virus-like particle vaccine induces protective immunity against homologous and heterologous strains of influenza virus. J Virol. 2007;81(7):3514–3524.
  • Lee DH, Park JK, Lee YN, et al. H9N2 avian influenza virus-like particle vaccine provides protective immunity and a strategy for the differentiation of infected from vaccinated animals. Vaccine. 2011;29(23):4003–4007.
  • Neumann G, Watanabe T, Kawaoka Y. Plasmid-driven formation of influenza virus-like particles. J Virol. 2000;74(1):547–551.
  • Carinhas N, Bernal V, Yokomizo AY, et al. Baculovirus production for gene therapy: the role of cell density, multiplicity of infection and medium exchange. Appl Microbiol Biotechnol. 2009;81(6):1041–1049.
  • Petiot E, Cuperlovic-Culf M, Shen CF, et al. Influence of HEK293 metabolism on the production of viral vectors and vaccine. Vaccine. 2015; 33(44):5974–5981.
  • Bright RA, Carter DM, Daniluk S, et al. Influenza virus-like particles elicit broader immune responses than whole virion inactivated influenza virus or recombinant hemagglutinin. Vaccine. 2007;25(19):3871–3878.
  • Monteiro F, Bernal V, Chaillet M, et al. Targeted supplementation design for improved production and quality of enveloped viral particles in insect-cell baculovirus expression system. J Biotechnol. 2016;233:34–41.
  • Roldão A, Mellado MCM, Castilho LR, et al. Virus-like particles in vaccine development. Expert Rev Vaccines. 2010;9(10):1149–1176.
  • Venereo-Sanchez A, Simoneau M, Lanthier S, et al. Process intensification for high yield production of influenza H1N1 Gag virus-like particles using an inducible HEK-293 stable cell line. Vaccine. 2017;35(33):4220–4228.
  • Robinson JM. An alternative to the scale-up and distribution of pandemic influenza vaccine. BioPharm Int Suppl. 2009;1.
  • Hahn T, Courbron D, Hamer M, et al. Rapid manufacture and release of a GMP batch of avian influenza A(H7N9) virus-like particle vaccine made using recombinant baculovirus-Sf9 insect cell culture technology. Bioprocess J. 2013;12(2):4–17.
  • Wirz H, Sauer-Budge AF, Briggs J, et al. Automated production of plant-based vaccines and pharmaceuticals. J Lab Autom. 2012;17(6):449–457.
  • Landry N, Barbeau B, Charland N, et al. Plants As an innovative and accelerated vaccine-manufacturing solution. BioPharm Int Suppl. 2011;4.
  • Council of Europe. Influenza vaccine (split virion, inactivated). Eur Pharmacopoeia. 2008. 867–868.
  • Council of Europe. Influenza vaccine (Surface antigen, inactivated, prepared in cell cultures). Eur Pharmacopoeia. 2009. 865–867.
  • Thompson CMCM, Petiot E, Lennaertz A, et al. Analytical technologies for influenza virus-like particle candidate vaccines: challenges and emerging approaches. Virol J. 2013;10(141):1–14.
  • Zhao Q, Li S, Yu H, et al. Virus-like particle-based human vaccines: quality assessment based on structural and functional properties. Trends Biotechnol. 2013;31(11):654–663.
  • Vicente T, Mota JPB, Peixoto C, et al. Rational design and optimization of downstream processes of virus particles for biopharmaceutical applications: current advances. Biotechnol Adv. 2011;29(6):869–878.
  • Effio CL, Hubbuch J. Next generation vaccines and vectors: designing downstream processes for recombinant protein-based virus-like particles. Biotechnol J. 2015;10(5):715–727.
  • Kissmann J, Joshi SB, Haynes JR, et al. H1N1 influenza virus-like particles : physical degradation pathways and identification of stabilizers. J Pharm Sci. 2011;100(2):634–645.
  • Kalbfuss B, Genzel Y, Wolff M, et al. Harvesting and concentration of human influenza A virus produced in serum-free mammalian cell culture for the production of vaccines. Biotechnol Bioeng. 2007;97(1):73–85.
  • Smith GE, Pushko P Avian Influenza Chimeric VLPs. WO 2009/012489 A1 (2009).
  • Wolff MW, Reichl U. Downstream processing of cell culture-derived virus particles. Expert Rev Vaccines. 2011;10(10):1451–1475.
  • Sugita Y, Noda T, Sagara H, et al. Ultracentrifugation deforms unfixed influenza A virions. J Gen Virol. 2011;92(11):2485–2493.
  • Steppert P, Burgstaller D, Klausberger M, et al. Purification of HIV-1 gag virus-like particles and separation of other extracellular particles. J Chromatogr A. 2016;1455:93–101.
  • Cantin R, Diou J, Bélanger D, et al. Discrimination between exosomes and HIV-1: purification of both vesicles from cell-free supernatants. J Immunol Methods. 2008;338(1–2):21–30.
  • Nayak DP, Lehmann S, Reichl U. Downstream processing of MDCK cell-derived equine influenza virus. J Chromatogr B Anal Technol Biomed Life Sci. 2005;823(2):75–81.
  • Lin SY, Chiu HY, Chiang BL, et al. Development of EV71 virus-like particle purification processes. Vaccine. 2015;33(44):5966–5973.
  • Negrete A, Pai A, Shiloach J. Use of hollow fiber tangential flow filtration for the recovery and concentration of HIV virus-like particles produced in insect cells. J Virol Methods. 2014;195:240–246.
  • Lee D-H, Bae S-W, Park J-K, et al. Virus-like particle vaccine protects against H3N2 canine influenza virus in dog. Vaccine. 2013;31(32):3268–3273.
  • Song J-M, Choi C-W, Kwon S-O, et al. Proteomic characterization of influenza H5N1 virus-like particles and their protective immunogenicity. J Proteome Res. 2012;10(8):3450–3459.
  • Bright RA, Carter DM, Crevar CJ, et al. Cross-clade protective immune responses to influenza viruses with H5N1 HA and NA elicited by an influenza virus-like particle. PLoS One. 2008;3(1):e1501.
  • Hammonds J, Chen X, Zhang X, et al. Advances in methods for the production, purification, and characterization of HIV-1 Gag-Env pseudovirion vaccines. Vaccine. 2007;25(47):8036–8048.
  • Vicente T, Burri S, Wellnitz S, et al. Fully aseptic single-use cross flow filtration system for clarification and concentration of cytomegalovirus-like particles. Eng Life Sci. 2014;14(3):318–326.
  • Park YC, Song JM. Preparation and immunogenicity of influenza virus-like particles using nitrocellulose membrane filtration. Clin Exp Vaccine Res. 2017;6(1):61–66.
  • Park JK, Lee DH, Youn HN, et al. Protective efficacy of crude virus-like particle vaccine against HPAI H5N1 in chickens and its application on DIVA strategy. Influenza Other Respir Viruses. 2013;7(3):340–348.
  • Rajamanickam V, Herwig C, Spadiut O. Monoliths in bioprocess technology. Chromatography. 2015;2(2):195–212.
  • Orr V, Zhong L, Moo-Young M, et al. Recent advances in bioprocessing application of membrane chromatography. Biotechnol Adv. 2013;31(4):450–465.
  • Banjac M, Roethl E, Gelhart F, et al. Purification of Vero cell derived live replication deficient influenza A and B virus by ion exchange monolith chromatography. Vaccine. 2014;32(21):2487–2492.
  • Ladd Effio C, Hahn T, Seiler J, et al. Modeling and simulation of anion-exchange membrane chromatography for purification of Sf9 insect cell-derived virus-like particles. J Chromatogr A. 2016;1429:142–154.
  • Removal of DNA and baculovirus from influenza virus-like particles using Capto TM Q. GE Healthcare Life Sciences. Application note : 28-9924-41 AA.
  • Steppert P, Burgstaller D, Klausberger M, et al. Purification of HIV-1 gag virus-like particles and separation of other extra cellular particles. J Chromatogr A. 2016;1–9.
  • Steppert P, Burgstaller D, Klausberger M, et al. Separation of HIV-1 gag virus-like particles from vesicular particles impurities by hydroxyl-functionalized monoliths. J Sep Sci. 2017;40(4):979–990.
  • Kalbfuss B, Flockerzi D, Seidel-Morgenstern A, et al. Size-exclusion chromatography as a linear transfer system: purification of human influenza virus as an example. J Chromatogr B Anal Technol Biomed Life Sci. 2008;873(1):102–112.
  • Center for Biologics Evaluation and Research. Guidance for Industry. Characterization and Qualification of Cell Substrates and Other Biological Materials Used in the Production of Viral Vaccines for Infectious Disease Indications.
  • Hutchinson EC, Charles PD, Hester SS, et al. Conserved and host-specific features of influenza virion architecture. Nat Commun. 2014;5:4816.
  • Le Mauff F, Mercier G, Chan P, et al. Biochemical composition of haemagglutinin-based influenza virus-like particle vaccine produced by transient expression in tobacco plants. Plant Biotechnol J. 2015;13(5):717–725.
  • Sadowski T, Li J, Sarathi B, et al. Stability testing programs for a novel virus-like particle vaccine. BioPharm Int Suppl. 2010;23(Suppl.,):26–34.
  • Kumru OS, Joshi SB, Smith DE, et al. Vaccine instability in the cold chain: mechanisms, analysis and formulation strategies. Biologicals. 2014;42(5):237–259.
  • Quan F-S, Ko E-J, Kwon Y-M, et al. Mucosal adjuvants for influenza virus-like particle vaccine. Viral Immunol. 2013;26(6):385–395.
  • Allen JD, Owino SO, Carter DM, et al. Broadened immunity and protective responses with emulsion-adjuvanted H5 COBRA-VLP vaccines. Vaccine. 2017;35(38):5209–5216.
  • Ren Z, Ji X, Meng L, et al. H5N1 influenza virus-like particle vaccine protects mice from heterologous virus challenge better than whole inactivated virus. Virus Res. 2015;200(C):9–18.
  • Jack Hu C-M, Chien C-Y, Liu M-T, et al. Multi-antigen avian influenza a (H7N9) virus-like particles: particulate characterizations and immunogenicity evaluation in murine and avian models. BMC Biotechnol. 2017;1:1–12.
  • Smith GE, Flyer DC, Raghunandan R, et al. Development of influenza H7N9 virus like particle (VLP) vaccine: homologous A/Anhui/1/2013 (H7N9) protection and heterologous A/chicken/Jalisco/CPA1/2012 (H7N3) cross-protection in vaccinated mice challenged with H7N9 virus. Vaccine. 2013;31(40):4305–4313.
  • Rajão DS, Pérez DR. Universal vaccines and vaccine platforms to protect against influenza viruses in humans and agriculture. Front Microbiol. 2018;9:1–21.
  • Sautto GA, Kirchenbaum GA, Ross TM. Towards a universal influenza vaccine: different approaches for one goal. Virol J. 2018;15(1):1–12.
  • Galarza JM, Latham T, Cupo A. Virus-Like Particle Vaccine Conferred Complete Protection Against a Lethal Influenza Virus Challenge. Viral Immunol. 2005;18(2):365–372.
  • Matassov D, Cupo A, Galarza JM. A novel intranasal virus-like particle (VLP) vaccine designed to protect against the pandemic 1918 influenza A virus (H1N1). Viral Immunol. 2007;20(3):441–452.
  • Pan Y-S, Wei H-J, Chang -C-C, et al. Construction and characterization of insect cell-derived influenza VLP: cell binding, fusion, and EGFP incorporation. J Biomed Biotechnol. 2010;506363:2010.
  • Wei H-J, Chang W, Lin S-C, et al. Fabrication of influenza virus-like particles using M2 fusion proteins for imaging single viruses and designing vaccines. Vaccine. 2011;29(41):7163–7172.
  • Tao P, Luo M, Zhu D, et al. Virus-like particle vaccine comprised of the HA, NA, and M1 proteins of an avian isolated H5N1 influenza virus induces protective immunity against homologous and heterologous strains in mice. Viral Immunol. 2009;22(4):273–281.
  • Prel A, Le Gall-Reculé G, Cherbonnel M, et al. Assessment of the protection afforded by triple baculovirus recombinant coexpressing H5, N3, M1 proteins against a homologous H5N3 low-pathogenicity avian influenza virus challenge in Muscovy ducks. Avian Dis. 2007;51(1 Suppl):484–489.
  • Pyo HM, Masic A, Woldeab N, et al. Pandemic H1N1 influenza virus-like particles are immunogenic and provide protective immunity to pigs. Vaccine. 2012;30(7):1297–1304.
  • Kang S-M, Yoo D-G, Lipatov AS, et al. Induction of long-term protective immune responses by influenza H5N1 virus-like particles. PLoS One. 2009;4(3):e4667.
  • Quan F-S, Vunnava A, Compans RW, et al. Virus-like particle vaccine protects against 2009 H1N1 pandemic influenza virus in mice. PLoS One. 2010;5(2):e9161.
  • Jaber Hossain M, Bourgeois M, Quan FS, et al. Virus-like particle vaccine containing hemagglutinin confers protection against 2009 H1N1 pandemic influenza. Clin Vaccine Immunol. 2011;18(12):2010–2017.
  • Wen Z, Ye L, Gao Y, et al. Immunization by influenza virus-like particles protects aged mice against lethal influenza virus challenge. Antiviral Res. 2009;84(3):215–224.
  • Schwartzman LM, Cathcart AL, Pujanauski LM, et al. An intranasal virus-like particle vaccine broadly protects mice from multiple subtypes of influenza a virus. mBio. 2015;6(4):1–9.
  • Ji X, Ren Z, Xu N, et al. Intranasal immunization with influenza virus-like particles containing membrane-anchored cholera toxin B or ricin toxin B enhances adaptive immune responses and protection against an antigenically distinct virus. Viruses. 2016;8:4.
  • Satomi Yanase MS, Masatoshi Okamatsu CMO. Influenza virus-like particles containing HA, NA, and M1 induced protection in chickens against a lethal challenge with the highly pathogenic H5N1 avian influenza virus. J Vaccines Vaccin. 2013;4(6):1–7.
  • Pushko P, Pearce MB, Ahmad A, et al. Influenza virus-like particle can accommodate multiple subtypes of hemagglutinin and protect from multiple influenza types and subtypes. Vaccine. 2011;29(35):5911–5918.
  • Haynes JR, Dokken L, Wiley JA, et al. Influenza-pseudotyped Gag virus-like particle vaccines provide broad protection against highly pathogenic avian influenza challenge. Vaccine. 2009;27(4):530–541.
  • Tretyakova I, Pearce MB, Florese R, et al. Intranasal vaccination with H5, H7 and H9 hemagglutinins co-localized in a virus-like particle protects ferrets from multiple avian influenza viruses. Virology. 2013;442(1):67–73.
  • Pushko P, Tretyakova I, Hidajat R, et al. Virus-like particles displaying H5, H7, H9 hemagglutinins and N1 neuraminidase elicit protective immunity to heterologous avian influenza viruses in chickens. Virology. 2017;501:176–182, (November 2016)
  • Song JM, Hossain J, Yoo DG, et al. Protective immunity against H5N1 influenza virus by a single dose vaccination with virus-like particles. Virology. 2010;405(1):165–175.
  • Liu YV, Massare MJ, Pearce MB, et al. Recombinant virus-like particles elicit protective immunity against avian influenza A(H7N9) virus infection in ferrets. Vaccine. 2015;33(18):2152–2158.
  • Pushko P, Kort T, Nathan M, et al. Recombinant H1N1 virus-like particle vaccine elicits protective immunity in ferrets against the 2009 pandemic H1N1 influenza virus. Vaccine. 2010;28(30):4771–4776.
  • Krammer F, Palese P. Advances in the development of influenza virus vaccines. Nat Rev Drug Discov. 2015;14(3):167–182.
  • Partridge J, Kieny MP. Global production capacity of seasonal influenza vaccine in 2011. Vaccine. 2013;31(5):728–731.
  • Pillet S, Racine T, Nfon C, et al. Plant-derived H7 VLP vaccine elicits protective immune response against H7N9 influenza virus in mice and ferrets. Vaccine. 2015;33(46):6282–6289.
  • Landry N, Ward BJ, Trépanier S, et al. Preclinical and clinical development of plant-made virus-like particle vaccine against avian H5N1 influenza. PLoS One. 2010;5(12):e15559.
  • Medicago. Press release - medicago to build $245m production facility in quebec city. (2015).
  • Yusibov V, Kushnir N, Streatfield SJ. Advances and challenges in the development and production of effective plant-based influenza vaccines. Expert Rev Vaccines. 2015;14(4):519–535.
  • Quadrivalent Influenza VLP Vaccine Dose Ranging Study in Young Adults. Available from: https://clinicaltrials.gov/ct2/show/NCT02307851.
  • Hahn T, Courbron D, Hamer M, et al.Rapid Manufacture and Release of a GMP Batch of Avian Influenza A(H7N9) Virus-Like Particle Vaccine Made Using Recombinant Baculovirus-Sf9 Insect Cell Culture Technology. BioProcess J. 2013;12(2): 4–17.
  • Quan F, Kim M, Lee B, et al. Influenza M1 VLPs containing neuraminidase induce heterosubtypic cross-protection. Virology. 2012;430(2):127–135.
  • Chang GR-L, Lai S-Y, Chang P-C, et al. Production of immunogenic one-component avian H7-subtype influenza virus-like particles. Process Biochem. 2011;46(6):1292–1298.
  • Rybicki EP. Plant-based vaccines against viruses. Virol J. 2014;11(1):205.
  • Vézina L-P, Ward BJ, D’Aoust M-A, et al. Influenza virus-like particles produced in nicotiana benthamiana protect against a lethal viral challenge in Mice. In: Commercial Plant-Produced Recombinant Protein Products. Biotechnology in Agriculture and Forestry. Howard J, Hood E (Eds.). Springer Berlin Heidelberg. 2014; 83–102.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.