199
Views
2
CrossRef citations to date
0
Altmetric
Review

Post-exposure prophylactic vaccine candidates for the treatment of human Risk Group 4 pathogen infections

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 85-103 | Received 10 Oct 2019, Accepted 07 Jan 2020, Published online: 30 Jan 2020

References

  • World Health Organization. Laboratory biosafety manual. Geneva, Switzerland; 2004 [cited 2020 Jan 21]. Available from https://www.who.int/csr/resources/publications/biosafety/Biosafety7.pdf?ua=1
  • Centers for Disease Control and Prevention (CDC). Biosafety in microbiological and biomedical laboratories. 5th ed. Atlanta, USA; 2009 [cited 2020 Jan 21]. Available from: https://www.cdc.gov/labs/pdf/CDC-BiosafetyMicrobiologicalBiomedicalLaboratories-2009-P.PDF
  • National Academy of Sciences and National Research Council. Biosecurity challenges of the global expansion of high-containment biological laboratories: summary of a workshop. Washington, DC: The National Academies Press; 2012.
  • Centers for Disease Control and Prevention. Bioterrorism agents/diseases. 2018 [cited 2020 Jan 21]. Available from: https://emergency.cdc.gov/agent/agentlist-category.asp
  • National Institute of Allergy and Infectious Diseases. NIAID emerging infectious diseases/pathogens. 2018 [cited 2020 Jan 21]. Available from: https://www.niaid.nih.gov/research/emerging-infectious-diseases-pathogens
  • US Department of Health and Human Services, US Centers for Disease Control and Prevention, US Department of Agriculture. Select agents and toxins list. 2017 [cited 2020 Jan 21]. Available from: https://www.selectagents.gov/selectagentsandtoxinslist.html
  • The Australia Group. List of human and animal pathogens and toxins for export control. 2017 [cited 2020 Jan 21]. Available from: http://www.australiagroup.net/en/human_animal_pathogens.html
  • World Health Organization. ICD-11 for mortality and morbidity statistics (December 2018). 2018 [cited 2020 Jan 21]. Available from: https://icd.who.int/browse11/l-m/en
  • Fooks AR, Brookes SM, Johnson N, et al. European bat lyssaviruses: an emerging zoonosis. Epidemiol Infect. 2003;131(3):1029–1039.
  • Rupprecht CE, Hanlon CA, Hemachudha T. Rabies re-examined. Lancet Infect Dis. 2002;2(6):327–343.
  • Knobel DL, Cleaveland S, Coleman PG, et al. Re-evaluating the burden of rabies in Africa and Asia. Bull World Health Organ. 2005;83(5):360–368.
  • Krebs JW, Mandel EJ, Swerdlow DL, et al. Rabies surveillance in the United States during 2004. J Am Vet Med Assoc. 2005;227(12):1912–1925.
  • Sikes RK, Cleary WF, Koprowski H, et al. Effective protection of monkeys against death from street virus by post-exposure administration of tissue-culture rabies vaccine. Bull World Health Organ. 1971;45(1):1–11.
  • Umoh JU, Blenden DC. Post-exposure immunoprophylaxis of goats against rabies. Int J Zoonoses. 1981;8(2):127–134.
  • Basheer AM, Ramakrishna J, Manickam R. Evaluation of post-exposure vaccination against rabies in cattle. New Microbiol. 1997;20(3):289–294.
  • Blancou J, Soria Baltazar R, Molli I, et al. Effective postexposure treatment of rabies-infected sheep with rabies immune globulin and vaccine. Vaccine. 1991;9(6):432–437.
  • Cho HC, Lawson KF. Protection of dogs against death from experimental rabies by postexposure administration of rabies vaccine and hyperimmune globulin (human). Can J Vet Res. 1989;53(4):434–437.
  • Manning SE, Rupprecht CE, Fishbein D, et al.. Human rabies prevention - United States, 2008: recommendations of the Advisory Committee on Immunization Practices. MMWR Recomm Rep. 2008;57(RR–3):1–28.
  • Centers for Disease Control and Prevention. Human rabies. 2019 [cited 2020 Jan 21]. Available from: https://www.cdc.gov/rabies/location/usa/surveillance/human_rabies.html
  • Kortepeter MG, Martin JW, Rusnak JM, et al. Managing potential laboratory exposure to Ebola virus by using a patient biocontainment care unit. Emerg Infect Dis. 2008;14(6):881–887.
  • Günther S, Feldmann H, Geisbert TW, et al. Management of accidental exposure to Ebola virus in the biosafety level 4 laboratory, Hamburg, Germany. J Infect Dis. 2011;204(Suppl 3):S785–S790.
  • Guven G, Talan L, Altintas ND, et al. An unexpected fatal CCHF case and management of exposed health care workers. Int J Infect Dis. 2017;55:118–121.
  • Vasconcelos P, Rosa ATD, Rodrigues SG, et al. Infecção humana adquirida em laboratório causada pelo virus SP H 114202 (Arenavirus: família Arenaviridae): aspectos clínicos e laboratoriais. Rev Inst Med Trop São Paulo. 1993;35(6):521–525.
  • Leifer E, Gocke DJ, Bourne H. Lassa fever, a new virus disease of man from West Africa. II. Report of a laboratory-acquired infection treated with plasma from a person recently recovered from the disease. Am J Trop Med Hyg. 1970;19(4):677–679.
  • Gaidamovich SY, Butenko AM, Leschinskaya HV. Human laboratory acquired arbo-, arena-, and hantavirus infections. J Am Biol Safety Assoc. 2000;5(1):5–11.
  • Акинфеева ЛА, Аксёнова ОИ, Василевич ИВ, et al.. Случай вирусной геморрагической лихорадки Эбола. Инфекционные Болезни. 2005;3(1):85–88.
  • Никифоров ВВ, Туровский ЮИ, Калинин ПП, et al.. Случай лабораторного заражения лихорадкой Марбург. Ж Микробиол Эпидемиол Иммунобиол. 1994;3:104–106.
  • Purushotham J, Lambe T, Gilbert SC. Vaccine platforms for the prevention of Lassa fever. Immunol Lett. 2019;215:1–11.
  • Volz A, Sutter G. Modified vaccinia virus Ankara: history, value in basic research, and current perspectives for vaccine development. Adv Virus Res. 2017;97:187–243.
  • Voigt EA, Kennedy RB, Poland GA. Defending against smallpox: a focus on vaccines. Expert Rev Vaccines. 2016;15(9):1197–1211.
  • Thakur N, Bailey D. Advances in diagnostics, vaccines and therapeutics for Nipah virus. Microbes Infect. 2019;21:278–286.
  • Marzi A, Mire CE. Current Ebola virus vaccine progress. BioDrugs. 2019;33(1):9–14.
  • Dowall SD, Carroll MW, Hewson R. Development of vaccines against Crimean-Congo haemorrhagic fever virus. Vaccine. 2017;35(44):6015–6023.
  • Wilson DE, Reeder DM. Mammal species of the world. A taxonomic and geographic reference. 3rd ed. Baltimore, USA: Johns Hopkins University Press; 2005. Available from: https://www.departments.bucknell.edu/biology/resources/msw3/
  • Bray M, Davis K, Geisbert T, et al. A mouse model for evaluation of prophylaxis and therapy of Ebola hemorrhagic fever. J Infect Dis. 1998;178(3):651–661.
  • Connolly BM, Steele KE, Davis KJ, et al. Pathogenesis of experimental Ebola virus infection in guinea pigs. J Infect Dis. 1999;179(Suppl 1):S203–S217.
  • Centers for Disease Control and Prevention. Smallpox. Signs and symptoms. 2016 [cited 2020 Jan 21]. Available from: https://www.cdc.gov/smallpox/symptoms/index.html
  • Jenner E. On the origin of the vaccine inoculation. Med Phys J. 1801;5(28):505–508.
  • Fenner F. Smallpox and its eradication. Geneva, Switzerland: World Health Organization; 1988.
  • Keckler MS, Reynolds MG, Damon IK, et al. The effects of post-exposure smallpox vaccination on clinical disease presentation: addressing the data gaps between historical epidemiology and modern surrogate model data. Vaccine. 2013;31(45):5192–5201.
  • Crosby D. The recent epidemic of smallpox in California. Cal State J Med. 1904;II(4):110–113.
  • Sutherland IN. Some aspects of the epidemiology of smallpox in Scotland in 1942 (abridged). Proc R Soc Med. 1943;XXXVI(5):227–236.
  • Dixon CW. Smallpox in Tripolitania, 1946; an epidemiological and clinical study of 500 cases, including trials of penicillin treatment. J Hyg (Lond). 1948;46(4):351–377.
  • Smith CS. Smallpox in Staffordshire, 1947. Outbreak at Bilston. Br Med J. 1948;1(4542):139–142.
  • Mack TM. Smallpox in Europe, 1950–1971. J Infect Dis. 1972;125(2):161–169.
  • Douglas J, Edgar W. Smallpox in Bradford, 1962. Br Med J. 1962;1(5278):612–614.
  • Rao AR, Jacob ES, Kamalakshi S, et al. Epidemiological studies in smallpox. A study of intrafamilial transmission in a series of 254 infected families. Indian J Med Res. 1968;56(12):1826–1854.
  • Mack TM, Thomas DB, Ali A, et al. Epidemiology of smallpox in West Pakistan. I. Acquired immunity and the distribution of disease. Am J Epidemiol. 1972;95(2):157–168.
  • Heiner GG, Fatima N, McCrumb FR Jr.. A study of intrafamilial transmission of smallpox. Am J Epidemiol. 1971;94(4):316–326.
  • Sommer A. The 1972 smallpox outbreak in Khulna Municipality, Bangladesh. II. Effectiveness of surveillance and containment in urban epidemic control. Am J Epidemiol. 1974;99(4):303–313.
  • Mazumder DN, Chakraborty AK. Epidemic of smallpox among the evacuees from Bangladesh in Salt Lake area near Calcutta. J Indian Med Assoc. 1973;60(8):275–280.
  • Mazumder DN, De S, Mitra AC, et al. Clinical observations on smallpox: a study of 1233 patients admitted to the Infectious Diseases Hospital, Calcutta, during 1973. Bull World Health Organ. 1975;52(3):301–306.
  • Rao AR. Smallpox. Bombay, India: Kothari Book Depot; 1972.
  • Staib C, Suezer Y, Kisling S, et al. Short-term, but not post-exposure, protection against lethal orthopoxvirus challenge after immunization with modified vaccinia virus Ankara. J Gen Virol. 2006;87(Pt 10):2917–2921.
  • Paran N, Suezer Y, Lustig S, et al. Postexposure immunization with modified vaccinia virus Ankara or conventional Lister vaccine provides solid protection in a murine model of human smallpox. J Infect Dis. 2009;199(1):39–48.
  • Samuelsson C, Hausmann J, Lauterbach H, et al. Survival of lethal poxvirus infection in mice depends on TLR9, and therapeutic vaccination provides protection. J Clin Invest. 2008;118(5):1776–1784.
  • Lauterbach H, Kassub R, Pätzold J, et al. Immune requirements of post-exposure immunization with modified vaccinia Ankara of lethally infected mice. PLoS One. 2010;5(3):e9659.
  • Parker S, Crump R, Foster S, et al. Co-administration of the broad-spectrum antiviral, brincidofovir (CMX001), with smallpox vaccine does not compromise vaccine protection in mice challenged with ectromelia virus. Antiviral Res. 2014;111:42–52.
  • Stittelaar KJ, Neyts J, Naesens L, et al. Antiviral treatment is more effective than smallpox vaccination upon lethal monkeypox virus infection. Nature. 2006;439(7077):745–748.
  • Holechek SA, Denzler KL, Heck MC, et al. Use of a recombinant vaccinia virus expressing interferon gamma for post-exposure protection against vaccinia and ectromelia viruses. PLoS One. 2013;8(10):e77879.
  • Kuhn JH, Adachi T, Adhikari NKJ, et al. New filovirus disease classification and nomenclature. Nat Rev Microbiol. 2019;17(5):261–263.
  • Kuhn JH, et al.. Ebolavirus and marburgvirus Infections. In: Jameson JL, Fauci AS, Kasper DL, editors. Harrison’s principles of internal medicine. Columbus, USA: McGraw-Hill Education; 2018. p. 1509–1515.
  • Dudas G, Carvalho LM, Bedford T, et al. Virus genomes reveal factors that spread and sustained the Ebola epidemic. Nature. 2017;544(7650):309–315.
  • Bullard SG. A day-by-day chronicle of the 2013-2016 Ebola outbreak. Cham, Switzerland: Springer; 2018.
  • World Health Organization. Prioritizing diseases for research and development in emergency contexts. 2018 [cited 2020 Jan 21]. Available from: https://www.who.int/blueprint/priority-diseases/en/
  • Amman BR, Swanepoel R, Nichol ST, et al. Ecology of filoviruses. Curr Top Microbiol Immunol. 2017;411:23–61.
  • Kuhn JH. Filoviruses. A compendium of 40 years of epidemiological, clinical, and laboratory studies. Arch Virol Suppl. 2008;20:13–360.
  • Bausch DG, Bangura J, Garry RF, et al. A tribute to Sheik Humarr Khan and all the healthcare workers in West Africa who have sacrificed in the fight against Ebola virus disease: mae we hush. Antiviral Res. 2014;111:33–35.
  • Feldmann H, Jones SM, Daddario-DiCaprio KM, et al. Effective post-exposure treatment of Ebola infection. PLoS Pathog. 2007;3(1):e2.
  • Tsuda Y, Safronetz D, Brown K, et al. Protective efficacy of a bivalent recombinant vesicular stomatitis virus vaccine in the Syrian hamster model of lethal Ebola virus infection. J Infect Dis. 2011;204(Suppl 3):S1090–S1097.
  • Marzi A, Hanley PW, Haddock E, et al.. Efficacy of vesicular stomatitis virus-Ebola virus postexposure treatment in rhesus macaques infected with Ebola virus Makona. J Infect Dis. 2016;214(suppl3):S360–S366.
  • Shurtleff AC, Bavari S. Animal models for ebolavirus countermeasures discovery: what defines a useful model?. Expert Opin Drug Discov. 2015;10(7):685–702.
  • Shurtleff AC, Warren TK, Bavari S. Nonhuman primates as models for the discovery and development of ebolavirus therapeutics. Expert Opin Drug Discov. 2011;6(3):233–250.
  • Wong G, Qiu X, Ebihara H, et al. Characterization of a bivalent vaccine capable of inducing protection against both Ebola and cross-clade H5N1 influenza in mice. J Infect Dis. 2015;212(Suppl 2):S435–S442.
  • Lai L, Davey R, Beck A, et al. Emergency postexposure vaccination with vesicular stomatitis virus-vectored Ebola vaccine after needlestick. JAMA. 2015;313(12):1249–1255.
  • Wong KK, Davey RT Jr., Hewlett AL, et al. Use of postexposure prophylaxis after occupational exposure to Zaire ebolavirus. Clin Infect Dis. 2016;63(3):376–379.
  • Cnops L, Gerard M, Vandenberg O, et al. Risk of misinterpretation of Ebola virus PCR results after rVSV ZEBOV-GP vaccination. Clin Infect Dis. 2015;60(11):1725–1726.
  • Henao-Restrepo AM, Camacho A, Longini IM, et al.. Efficacy and effectiveness of an rVSV-vectored vaccine in preventing Ebola virus disease: final results from the Guinea ring vaccination, open-label, cluster-randomised trial (Ebola Ça Suffit!). Lancet. 2017;389(10068):505–518.
  • Zhang Y, Feng S, Cowling BJ. Changes in the primary outcome in Ebola vaccine trial. Lancet. 2016;387(10027):1509.
  • Krause PR. Interim results from a phase 3 Ebola vaccine study in Guinea. Lancet. 2015;386(9996):831–833.
  • Kieny MP, Longini IM, Henao-Restrepo AM, et al. Changes in the primary outcome in Ebola vaccine trial – authors’ reply. Lancet. 2016;387(10027):1509–1510.
  • Keusch G, McAdam K, Cuff P, et al. Integrating clinical research into epidemic response: the Ebola experience. Washington, DC: National Academies Press; 2017.
  • Davis C, Tipton T, Sabir S, et al.. Post-exposure prophylaxis with rVSV-ZEBOV following exposure to a patient with Ebola virus disease relapse in the UK: an operational, safety and immunogenicity report. Clin Infect Dis. 2019.
  • World Health Organization. Ebola virus disease, Democratic Republic of Congo. External situation report 72. 2019 [cited 2020 Jan 21]. Available from: https://www.who.int/publications-detail/ebola-virus-disease-democratic-republic-of-congo-external-situation-report-72-2019
  • World Health Organization. Strategic Advisory Group of Experts (SAGE) on Immunization. Interim recommendations on vaccination against Ebola Virus Disease (EVD). 2019 [cited 2019 May 7]. Available from: https://www.who.int/immunization/policy/position_papers/interim_ebola_recommendations_may_2019.pdf?ua=1
  • Kasereka MC, Sawatzky J, Hawkes MT. Ebola epidemic in war-torn Democratic Republic of Congo, 2018: acceptability and patient satisfaction of the recombinant Vesicular Stomatitis Virus - Zaire Ebolavirus Vaccine. Vaccine. 2019;37(16):2174–2178.
  • World Health Organization. Preliminary results on the efficacy of rVSV-ZEBOV-GP Ebola vaccine using the ring vaccination strategy in the control of an Ebola outbreak in the Democratic Republic of the Congo: an example of integration of research into epidemic response. 2019 [cited 2020 Jan 21]. Available from: https://www.who.int/csr/resources/publications/ebola/ebola-ring-vaccination-results-12-april-2019.pdf?ua=1
  • Mulangu S, Dodd LE, Davey RT Jr., et al. A randomized, controlled trial of Ebola virus disease therapeutics. N Engl J Med. 2019;381(24):2293–2303.
  • Wong G, Richardson JS, Pillet S, et al. Adenovirus-vectored vaccine provides postexposure protection to Ebola virus-infected nonhuman primates. J Infect Dis. 2015;212(Suppl 2):S379–S383.
  • Bradfute SB, Anthony SM, Stuthman KS, et al. Mechanisms of immunity in post-exposure vaccination against Ebola virus infection. PLoS One. 2015;10(3):e0118434.
  • Leitenberg M, Zilinskas RA, JH K. The Soviet biological weapons program—a history. Cambridge, USA: Harvard University Press; 2012.
  • Towner JS, Amman BR, Sealy TK, et al. Isolation of genetically diverse Marburg viruses from Egyptian fruit bats. PLoS Pathog. 2009;5(7):e1000536.
  • Amman BR, Carroll SA, Reed ZD, et al. Seasonal pulses of Marburg virus circulation in juvenile Rousettus aegyptiacus bats coincide with periods of increased risk of human infection. PLoS Pathog. 2012;8(10):e1002877.
  • Daddario-DiCaprio KM, Geisbert TW, Ströher U, et al. Postexposure protection against Marburg haemorrhagic fever with recombinant vesicular stomatitis virus vectors in non-human primates: an efficacy assessment. Lancet. 2006;367(9520):1399–1404.
  • Geisbert TW, Hensley LE, Geisbert JB, et al. Postexposure treatment of Marburg virus infection. Emerg Infect Dis. 2010;16(7):1119–1122. .
  • Woolsey C, Geisbert JB, Matassov D, et al. Postexposure efficacy of recombinant vesicular stomatitis virus vectors against high and low doses of Marburg virus variant Angola in nonhuman primates. J Infect Dis. 2018;218(suppl_5):S582–S587.
  • Geisbert TW, Daddario-DiCaprio KM, Williams KJ, et al. Recombinant vesicular stomatitis virus vector mediates postexposure protection against Sudan Ebola hemorrhagic fever in nonhuman primates. J Virol. 2008;82(11):5664–5668.
  • Kuhn JH, Charrel RN, et al.. Arthropod-borne and rodent-borne virus infections. In: Jameson JL, Fauci AS, Kasper DL, editors. Harrison’s principles of internal medicine. Columbus, USA: McGraw-Hill Education; 2018. p. 1489–1509.
  • Jonsson CB, Figueiredo LTM, Vapalahti O. A global perspective on hantavirus ecology, epidemiology, and disease. Clin Microbiol Rev. 2010;23(2):412–441.
  • Enria D, Padula P, Segura EL, et al. Hantavirus pulmonary syndrome in Argentina. Possibility of person to person transmission. Medicina (B Aires). 1996;56(6):709–711.
  • Padula PJ, Edelstein A, Miguel SDL, et al. Hantavirus pulmonary syndrome outbreak in Argentina: molecular evidence for person-to-person transmission of Andes virus. Virology. 1998;241(2):323–330.
  • Martinez VP, Bellomo C, San Juan J, et al. Person-to-person transmission of Andes virus. Emerg Infect Dis. 2005;11(12):1848–1853.
  • Brown KS, Safronetz D, Marzi A, et al. Vesicular stomatitis virus-based vaccine protects hamsters against lethal challenge with Andes virus. J Virol. 2011;85(23):12781–12791.
  • Groen J, Gerding M, Koeman JP, et al. A macaque model for hantavirus infection. J Infect Dis. 1995;172(1):38–44.
  • Sironen T, Klingström J, Vaheri A, et al. Pathology of Puumala hantavirus infection in macaques. PLoS One. 2008;3(8):e3035.
  • Safronetz D, Prescott J, Feldmann F, et al. Pathophysiology of hantavirus pulmonary syndrome in rhesus macaques. Proc Natl Acad Sci USA. 2014;111(19):7114–7119.
  • Ogbu O, Ajuluchukwu E, Uneke CJ. Lassa fever in West African sub-region: an overview. J Vector Borne Dis. 2007;44(1):1–11.
  • Bowen MD, Rollin PE, Ksiazek TG, et al. Genetic diversity among Lassa virus strains. J Virol. 2000;74(15):6992–7004.
  • Kainulainen MH, Spengler JR, Welch SR, et al. Protection from lethal Lassa disease can be achieved both before and after virus exposure by administration of single-cycle replicating Lassa virus replicon particles. J Infect Dis. 2019;220(8):1281–1289.
  • Gowen BB, Ennis J, Russell A, et al. Use of recombinant adenovirus vectored consensus IFN-α to avert severe arenavirus infection. PLoS One. 2011;6(10):e26072.
  • Spengler JR, Bergeron É, Spiropoulou CF. Crimean-Congo hemorrhagic fever and expansion from endemic regions. Curr Opin Virol. 2019;34:70–78.
  • Ergönül O. Crimean-Congo haemorrhagic fever. Lancet Infect Dis. 2006;6(4):203–214.
  • Swanepoel R, Shepherd AJ, Leman PA, et al. Epidemiologic and clinical features of Crimean-Congo hemorrhagic fever in southern Africa. Am J Trop Med Hyg. 1987;36(1):120–132.
  • Bente DA, Forrester NL, Watts DM, et al. Crimean-Congo hemorrhagic fever: history, epidemiology, pathogenesis, clinical syndrome and genetic diversity. Antiviral Res. 2013;100(1):159–189.
  • Hoogstraal H. The epidemiology of tick-borne Crimean-Congo hemorrhagic fever in Asia, Europe, and Africa. J Med Entomol. 1979;15(4):307–417.
  • Buttigieg KR, Dowall SD, Findlay-Wilson S, et al. A novel vaccine against Crimean-Congo haemorrhagic fever protects 100% of animals against lethal challenge in a mouse model. PLoS One. 2014;9(3):e91516.
  • Wong KT, Tan CT. Clinical and pathological manifestations of human henipavirus infection. Curr Top Microbiol Immunol. 2012;359:95–104.
  • Clayton BA, Wang LF, Marsh GA. Henipaviruses: an updated review focusing on the pteropid reservoir and features of transmission. Zoonoses Public Health. 2013;60(1):69–83.
  • Satterfield BA, Dawes BE, Milligan GN. Status of vaccine research and development of vaccines for Nipah virus. Vaccine. 2016;34(26):2971–2975.
  • Broder CC, Geisbert TW, Xu K, et al. Immunization strategies against henipaviruses. Curr Top Microbiol Immunol. 2012;359:197–223.
  • Field HE. Hendra virus ecology and transmission. Curr Opin Virol. 2016;16:120–125.
  • Bakhvalova VN, Chicherina GS, Potapova OF, et al. Tick-borne encephalitis virus diversity in ixodid ticks and small mammals in south-western Siberia, Russia. Vector Borne Zoonotic Dis. 2016;16(8):541–549.
  • Kaiser R. Tick-borne encephalitis. Infect Dis Clin North Am. 2008;22(3):561–575.
  • Lindquist L, Vapalahti O. Tick-borne encephalitis. Lancet. 2008;371(9627):1861–1871.
  • Haglund M, Günther G. Tick-borne encephalitis–pathogenesis, clinical course and long-term follow-up. Vaccine. 2003;21(Suppl 1):S11–S18.
  • Kaiser R, Kimmig P, Süss J. FSME-Risikogebiete in Deutschland müssen neu definiert werden. MMW Fortschr Med. 2007;149(5):34–35.
  • Demicheli V, Debalini MG, Rivetti A. Vaccines for preventing tick-borne encephalitis. Cochrane Database Syst Rev. 2009;1:CD000977.
  • Bröker M, Kollaritsch H. After a tick bite in a tick-borne encephalitis virus endemic area: current positions about post-exposure treatment. Vaccine. 2008;26(7):863–868.
  • Loew-Baselli A, Konior R, Pavlova BG, et al. Safety and immunogenicity of the modified adult tick-borne encephalitis vaccine FSME-IMMUN: results of two large phase 3 clinical studies. Vaccine. 2006;24(24):5256–5263.
  • Centers for Disease Control and Prevention. Tick-borne encephalitis (TBE). Prevention. 2014 [cited 2020 Jan 21]. Available from: https://www.cdc.gov/vhf/tbe/prevention/index.html
  • World Health Organization. Tick-borne encephalitis. Vaccine. 2019 [cited 2020 Jan 21]. Available from: https://www.who.int/ith/vaccines/tbev/en/
  • Kreil TR, Eibl MM. Pre- and postexposure protection by passive immunoglobulin but no enhancement of infection with a flavivirus in a mouse model. J Virol. 1997;71(4):2921–2927.
  • Chiba N, Osada M, Komoro K, et al. Protection against tick-borne encephalitis virus isolated in Japan by active and passive immunization. Vaccine. 1999;17(11–12):1532–1539.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.