827
Views
18
CrossRef citations to date
0
Altmetric
Review

Chlamydia trachomatis vaccines for genital infections: where are we and how far is there to go?

, &
Pages 421-435 | Received 18 Dec 2020, Accepted 04 Mar 2021, Published online: 28 Apr 2021

References

  • Nicolle C, Cuenod A, Baizot L. Etude experimentale du trachome. Arch Instit Pasteur de Tunis. 1913;4:82–157.
  • Schachter J, Dawson CR. Human chlamydial infections. Littleton, Mass: PSG Pub. Co.;1978. 273. xi.
  • Taylor HR. Trachoma: a blinding scourge from the Bronze Age to the twenty-first century. 1st ed. Victoria, Australia: Haddington Press Pry Ltd; 2008.
  • Taylor HR. Doyne Lecture: trachoma, is it history? Eye (Lond). 2009;23(11):22–2007.
  • Collier LH. Experiments with trachoma vaccines. Experimental system using inclusion blennorrhoea virus. Lancet. 1961;277(7181):795–800.
  • Collier LH, Blyth WA. Immunogenicity of experimental trachoma vaccines in baboons. I. Experimental methods, and preliminary tests with vaccines prepared in chick embryos and in HeLa cells. J Hyg (Lond). 1966;64(4):28–513.
  • Grayston JT, Woolridge RL, Wang S. Trachoma vaccine studies on Taiwan. Ann N Y Acad Sci. 1962;98:67–352.
  • Grayston JT, Woolridge RL, Wang SP, et al. Field studies of protection from infection by experimental trachoma virus vaccine in preschool-aged children on Taiwan. Proceedings of the Society for Experimental Biology and Medicine Society for Experimental Biology and Medicine. 1963;112:95–589.
  • Grayston JT, Wang SP, Yeh LJ, et al. Importance of reinfection in the pathogenesis of trachoma. Rev Infect Dis. 1985;7(6):25–717.
  • Nichols RL, Bell SD Jr., Murray ES, et al. Studies on trachoma. V. Clinical observations in a field trial of bivalent trachoma vaccine at three dosage levels in Saudi Arabia. Am J Trop Med Hyg. 1966;15(4):47–639.
  • Nichols RL, Bell SD Jr., Haddad NA, et al. Studies on trachoma. VI. Microbiological observations in a field trial in Saudi Arabia of bivalent rachoma vaccine at three dosage levels. Am J Trop Med Hyg. 1969;18(5):30–723.
  • Bietti G, Werner GH. Trachoma: prevention and treatment, by Giambattista Bietti and Georges H. Werner. Springfield, Ill.: Thomas;1967. 227. xv.
  • Woolridge RL, Grayston JT, Chang IH, et al. Field trial of a monovalent and of a bivalent mineral oil adjuvant trachoma vaccine in Taiwan school children. Am J Ophthalmol. 1967;63(Suppl 5):50–1645.
  • Sowa S, Sowa J, Collier LH, et al. Trachoma vaccine field trials in The Gambia. J Hyg (Lond). 1969;67(4):699–717.
  • Karunakaran KP, Yu H, Foster LJ, et al. Using MHC molecules to define a Chlamydia T cell vaccine. Methods Mol Biol. 2016;1403:32–419.
  • Poston TB, Darville T. Chlamydia trachomatis: protective adaptive responses and prospects for a vaccine. Curr Top Microbiol Immunol. 2016.
  • Yu H, Karunakaran KP, Jiang X, et al. Subunit vaccines for the prevention of mucosal infection with Chlamydia trachomatis. Expert Rev Vaccines. 2016;15(8):88–977.
  • Gottlieb SL, Deal CD, Giersing B, et al. The global roadmap for advancing development of vaccines against sexually transmitted infections: update and next steps. Vaccine. 2016;34(26):47–2939.
  • Liang S, Bulir D, Kaushic C, et al. Considerations for the rational design of a Chlamydia vaccine. Hum Vaccin Immunother. 2017;13(4):5–831.
  • de la Maza LM, Zhong G, Brunham RC. Update on Chlamydia trachomatis Vaccinology. Clin Vaccine Immunol. 2017;24(4).
  • Gottlieb SL, Johnston C. Future prospects for new vaccines against sexually transmitted infections. Curr Opin Infect Dis. 2017;30(1):77–86.
  • Hafner LM, Timms P. Development of a Chlamydia trachomatis vaccine for urogenital infections: novel tools and new strategies point to bright future prospects. Expert Rev Vaccines. 2018;17(1):57–69.
  • Phillips S, Quigley BL, Timms P. Seventy years of chlamydia vaccine research - limitations of the past and directions for the future. Front Microbiol. 2019;10:70.
  • Lizarraga D, Carver S, Timms P. Navigating to the most promising directions amid complex fields of vaccine development: a chlamydial case study. Expert Rev Vaccines. 2019;18(12):37–1323.
  • Poston TB, Gottlieb SL, Darville T. Status of vaccine research and development of vaccines for Chlamydia trachomatis infection. Vaccine. 2019;37(50):94–7289.
  • Zhong G, Brunham RC, de la Maza LM, et al. National Institute of allergy and infectious diseases workshop report: “Chlamydia vaccines: the way forward”. Vaccine. 2019;37(50):54–7346.
  • de la Maza LM, Pal S, Olsen AW, et al. Chlamydia vaccines. Tan M, Hegemann JH, Sutterlin C, editors. Norfolk, UK: Caister Academic Press; 2020. p. 83–339.
  • Order MJ. Chlamydiales and family Chlamydiaceae. In: Nr K, editor. Bergey’s Manual of Systemic Bacteriology. Baltimore: Williams and Wilkins; 1984. p. 729.
  • Moulder JW. Interaction of Chlamydiae and host cells in vitro. Microbiol Rev. 1991;55(1):90–143.
  • Lee JK, Enciso GA, Boassa D, et al. Replication-dependent size reduction precedes differentiation in Chlamydia trachomatis. Nat Commun. 2018;9(1):45.
  • Matsumoto A. Structural characteristics of chlamydia bodies. In: Barron A, editor. Microbiology of Chlamydia. Boca Raton: CRC Press Inc; 1988. p. 21–45.
  • de la Maza LM, Peterson EM. Scanning electron microscopy of McCoy cells infected with Chlamydia trachomatis. Exp Mol Pathol. 1982;36(2):26–217.
  • Sixt BS. Host cell death during infection with Chlamydia: a double-edged sword. FEMS Microbiol Rev. 2021;45(1).
  • Caldwell HD, Kromhout J, Schachter J. Purification and partial characterization of the major outer membrane protein of Chlamydia trachomatis. Infect Immun. 1981;31(3):76–1161.
  • Hatch TP. Disulfide cross-linked envelope proteins: the functional equivalent of peptidoglycan in chlamydiae? J Bacteriol. 1996;178(1):1–5.
  • Stephens RS, Lammel CJ. Chlamydia outer membrane protein discovery using genomics. Curr Opin Microbiol. 2001;4(1):16–20.
  • Tanner M, Harris J, Pace N. Molecular phylogeny of Chlamydia and relatives. In: Stephens R, editor. Chlamydia: intracellular biology, pathogenesis and immunity. Washington: ASM; 1999. p. 1–8.
  • Liu X, Afrane M, Clemmer DE, et al. Identification of Chlamydia trachomatis outer membrane complex proteins by differential proteomics. J Bacteriol. 2010;192(11):60–2852.
  • Saka HA, Thompson JW, Chen YS, et al. Quantitative proteomics reveals metabolic and pathogenic properties of Chlamydia trachomatis developmental forms. Mol Microbiol. 2011;82(5):203–1185.
  • Pal S, Mirzakhanyan Y, Gershon P, et al. Induction of protection in mice against a respiratory challenge by a vaccine formulated with exosomes isolated from Chlamydia muridarum infected cells. NPJ Vaccines. 2020;5(1):87.
  • Newman L, Rowley J, Vander Hoorn S, et al. Global estimates of the prevalence and incidence of four curable sexually transmitted Infections in 2012 based on systematic Review and global reporting. PLoS One. 2015;10(12):e0143304.
  • Price MJ, Ades AE, Welton NJ, et al. Proportion of pelvic inflammatory disease cases caused by Chlamydia trachomatis: consistent picture from different methods. J Infect Dis. 2016;214(4):24–617.
  • CDC Sexually transmitted disease surveillance. 2018. prevention DoS. editor. U.S. Department of Health and Human Services;Atlanta:2019.1–168.
  • Price MJ, Ades AE, Soldan K, et al. The natural history of Chlamydia trachomatis infection in women: a multi-parameter evidence synthesis. Health Technol Assess. 2016;20(22):1–250.
  • Brunham RC, Paavonen J. Reproductive system infections in women: lower genital tract syndromes. Pathog Dis. 2020;78(5).
  • Korenromp EL, Wi T, Resch S, et al. Costing of National STI Program Implementation for the Global STI Control Strategy for the Health Sector, 2016–2021. PLoS One. 2017;12(1):e0170773.
  • Eisinger RW, Erbelding E, Fauci AS. Refocusing research on sexually transmitted infections. J Infect Dis. 2020;222(9):4–1432.
  • Westrom L, Joesoef R, Reynolds G, et al. Pelvic inflammatory disease and fertility. A cohort study of 1,844 women with laparoscopically verified disease and 657 control women with normal laparoscopic results. Sex Transm Dis. 1992;19(4):92–185.
  • Chan PA, Robinette A, Montgomery M, et al. Extragenital infections caused by Chlamydia trachomatis and Neisseria gonorrhoeae: a Review of the literature. Infect Dis Obstet Gynecol. 2016;2016:5758387.
  • Mackern-Oberti JP, Motrich RD, Damiani MT, et al. Male genital tract immune response against Chlamydia trachomatis infection. Reproduction. 2017;154(4):R99–R110.
  • Bryan ER, Kim J, Beagley KW, et al. Testicular inflammation and infertility: could chlamydial infections be contributing? Am J Reprod Immunol. 2020;84(3):e13286.
  • Bryan ER, Redgrove KA, Mooney AR, et al. Chronic testicular Chlamydia muridarum infection impairs mouse fertility and offspring development. Biol Reprod. 2020;102(4):888–901.
  • Blatt AJ, Lieberman JM, Hoover DR, et al. Chlamydial and gonococcal testing during pregnancy in the United States. Am J Obstet Gynecol. 2012;207(1):55 e1–8.
  • Ditkowsky J, Shah KH, Hammerschlag MR, et al. Cost-benefit analysis of Chlamydia trachomatis screening in pregnant women in a high burden setting in the United States. BMC Infect Dis. 2017;17(1):155.
  • Williams CL, Harrison LL, Llata E, et al. Sexually transmitted diseases among pregnant women: 5 States, United States, 2009–2011. Matern Child Health J. 2018;22(4):45–538.
  • Ziklo N, Huston WM, Hocking JS, et al. Chlamydia trachomatis genital tract infections: when host immune response and the microbiome collide. Trends Microbiol. 2016;24(9):65–750.
  • Gratrix J, Singh AE, Bergman J, et al. Evidence for increased Chlamydia case finding after the introduction of rectal screening among women attending 2 Canadian sexually transmitted infection clinics. Clin Infect Dis. 2015;60(3):398–404.
  • Cole MJ, Field N, Pitt R, et al. Substantial underdiagnosis of lymphogranuloma venereum in men who have sex with men in Europe: preliminary findings from a multicentre surveillance pilot. Sex Transm Infect. 2020;96(2):42–137.
  • Farris CM, Morrison RP. Vaccination against Chlamydia genital infection utilizing the murine C muridarum model. Infect Immun. 2011;79(3):96–986.
  • Labuda JC, McSorley SJ. Diversity in the T cell response to Chlamydia-sum are better than one. Immunol Lett. 2018;202:59–64.
  • Nogueira CV, Zhang X, Giovannone N, et al. Protective immunity against Chlamydia trachomatis can engage both CD4+ and CD8+ T cells and bridge the respiratory and genital mucosae. J Immunol. 2015;194(5):29–2319.
  • Johnson RM, Olivares-Strank N, Peng G. A class II-restricted CD813 T cell clone protects during Chlamydia muridarum genital tract infection. J Infect Dis. 2020;221(11):1895–1906.
  • Morrison SG, Morrison RP. In situ analysis of the evolution of the primary immune response in murine Chlamydia trachomatis genital tract infection. Infect Immun. 2000;68(5):9–2870.
  • Farris CM, Morrison SG, Morrison RP. CD4+ T cells and antibody are required for optimal major outer membrane protein vaccine-induced immunity to Chlamydia muridarum genital infection. Infect Immun. 2010;78(10):83–4374.
  • Pal S, Theodor I, Peterson EM, et al. Monoclonal immunoglobulin A antibody to the major outer membrane protein of the Chlamydia trachomatis mouse pneumonitis biovar protects mice against a chlamydial genital challenge. Vaccine. 1997;15(5):82–575.
  • Li LX, McSorley SJ. A re-evaluation of the role of B cells in protective immunity to Chlamydia infection. Immunol Lett. 2015;164(2):88–93.
  • Pal S, Bravo J, Peterson EM, et al. Protection of wild-type and severe combined immunodeficiency mice against an intranasal challenge by passive immunization with monoclonal antibodies to the Chlamydia trachomatis mouse pneumonitis major outer membrane protein. Infect Immun. 2008;76(12):7–5581.
  • Naglak EK, Morrison SG, Morrison RP. Neutrophils are central to antibody-mediated protection against genital Chlamydia. Infect Immun. 2017;85(10). DOI:10.1128/IAI.00409-17
  • Russell AN, Zheng X, O’Connell CM, et al. Analysis of factors driving incident and ascending infection and the role of serum antibody in Chlamydia trachomatis genital tract infection. J Infect Dis. 2016;213(4):31–523.
  • Bakshi RK, Gupta K, Jordan SJ, et al. An adaptive Chlamydia trachomatis-specific IFN-gamma-producing CD4(+) T cell response is associated with protection against Chlamydia reinfection in women. Front Immunol. 2018;9:1981.
  • Brunham RC, Kuo CC, Cles L, et al. Correlation of host immune response with quantitative recovery of Chlamydia trachomatis from the human endocervix. Infect Immun. 1983;39(3):41–491.
  • Darville T, Albritton HL, Zhong W, et al. Anti-chlamydia IgG and IgA are insufficient to prevent endometrial chlamydia infection in women, and increased anti-chlamydia IgG is associated with enhanced risk for incident infection. Am J Reprod Immunol. 2019;81(5):e13103.
  • Ogendi BMO, Bakshi RK, Gupta K, et al. T cell phenotypes in women with Chlamydia trachomatis infection and influence of treatment on phenotype distributions. Microbes Infect. 2018;20(3):84–176.
  • Ogendi BMO, Bakshi RK, Sabbaj S, et al. Distinct peripheral vs mucosal T-cell phenotypes in Chlamydia-infected women. Am J Reprod Immunol. 2017;78(6):e12768.
  • Poston TB, Lee DE, Darville T, et al. Cervical cytokines associated with Chlamydia trachomatis susceptibility and protection. J Infect Dis. 2019;220(2):9–330.
  • Zheng X, O’Connell CM, Zhong W, et al. Discovery of blood transcriptional endotypes in women with pelvic inflammatory disease. J Immunol. 2018;200(8):56–2941.
  • Batteiger TA, Spencer N, Washam CL, et al. Endocervical miRNA expression profiles in women positive for Chlamydia trachomatis with clinical signs and/or symptoms are distinct from those in women positive for Chlamydia trachomatis without signs and symptoms. Infect Immun. 2020;88(10). DOI:10.1128/IAI.00057-20.
  • Yeruva L, Pouncey DL, Eledge MR, et al. MicroRNAs modulate pathogenesis resulting from Chlamydial infection in mice. Infect Immun. 2017;85(1). DOI:10.1128/IAI.00768-16.
  • Igietseme JU, He Q, Joseph K, et al. Role of T lymphocytes in the pathogenesis of Chlamydia disease. J Infect Dis. 2009;200(6):34–926.
  • Vicetti Miguel RD, Quispe Calla NE, Pavelko SD, et al. Intravaginal Chlamydia trachomatis challenge infection elicits Th1 and Th17 immune responses in mice that promote pathogen clearance and genital tract damage. PLoS One. 2016;11(9):e0162445.
  • Morrison SG, Giebel AM, Toh E, et al. A genital infection-attenuated Chlamydia muridarum mutant infects the gastrointestinal tract and protects against genital tract challenge. mBio. 2020;11(6):6.
  • Stary G, Olive A, Radovic-Moreno AF, et al. VACCINES. A mucosal vaccine against Chlamydia trachomatis generates two waves of protective memory T cells. Science. 2015;348(6241):aaa8205.
  • Pal S, Theodor I, Peterson EM,  et al. Immunization with an acellular vaccine consisting of the outer membrane complex of Chlamydia trachomatis induces protection against a genital challenge. Infect Immun. 1997;65(8):9–3361.
  • Yu H, Karunakaran KP, Jiang X, et al. Comparison of Chlamydia outer membrane complex to recombinant outer membrane proteins as vaccine. Vaccine. 2020;38(16):91–3280.
  • Stephens RS, Kalman S, Lammel C, et al. Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. Science. 1998;282(5389):9–754.
  • Fitch WM, Peterson EM, de la Maza LM. Phylogenetic analysis of the outer-membrane-protein genes of Chlamydiae, and its implication for vaccine development. Mol Biol Evol. 1993;10(4):892–913.
  • de la Maza LM, Peterson EM. Vaccines for Chlamydia trachomatis infections. Curr Opin Invest Drugs. 2002;3(7):6–980.
  • Nikaido H. Porins and specific channels of bacterial outer membranes. Mol Microbiol. 1992;6(4):42–435.
  • Nikaido H. Porins and specific diffusion channels in bacterial outer membranes. J Biol Chem. 1994;269(6):8–3905.
  • Stephens RS, Sanchez-Pescador R, Wagar EA, et al. Diversity of Chlamydia trachomatis major outer membrane protein genes. J Bacteriol. 1987;169(9):85–3879.
  • Baehr W, Zhang YX, Joseph T, et al. Mapping antigenic domains expressed by Chlamydia trachomatis major outer membrane protein genes. Proc Natl Acad Sci U S A. 1988;85(11):4–4000.
  • Stephens RS, Wagar EA, Schoolnik GK. High-resolution mapping of serovar-specific and common antigenic determinants of the major outer membrane protein of Chlamydia trachomatis. J Exp Med. 1988;167(3):31–817.
  • Ortiz L, Demick KP, Petersen JW, et al. Chlamydia trachomatis major outer membrane protein (MOMP) epitopes that activate HLA class II-restricted T cells from infected humans. J Immunol. 1996;157(10):67–4554.
  • Sun G, Pal S, Sarcon AK, et al. Structural and functional analyses of the major outer membrane protein of Chlamydia trachomatis. J Bacteriol. 2007;189(17):35–6222.
  • Pal S, Theodor I, Peterson EM, de la Maza LM. Immunization with the Chlamydia trachomatis mouse pneumonitis major outer membrane protein can elicit a protective immune response against a genital challenge. Infect Immun. 2001;69(10):7–6240.
  • Pal S, Peterson EM, de la Maza LM. Vaccination with the Chlamydia trachomatis major outer membrane protein can elicit an immune response as protective as that resulting from inoculation with live bacteria. Infect Immun. 2005;73(12):60–8153.
  • Pal S, Tatarenkova OV, de la Maza LM. A vaccine formulated with the major outer membrane protein can protect C3H/HeN, a highly susceptible strain of mice, from a Chlamydia muridarum genital challenge. Immunology. 2015;146(3):43–432.
  • Berry LJ, Hickey DK, Skelding KA, et al. Transcutaneous immunization with combined cholera toxin and CpG adjuvant protects against Chlamydia muridarum genital tract infection. Infect Immun. 2004;72(2):28–1019.
  • Carmichael JR, Pal S, Tifrea D, de la Maza LM. Induction of protection against vaginal shedding and infertility by a recombinant Chlamydia vaccine. Vaccine. 2011;29(32):83–5276.
  • Pal S, Cruz-Fisher MI, Cheng C, et al. Vaccination with the recombinant major outer membrane protein elicits long-term protection in mice against vaginal shedding and infertility following a Chlamydia muridarum genital challenge. NPJ Vaccines. 2020;5(1):90.
  • Verma R, Sahu R, Dixit S, et al. The Chlamydia M278 major outer membrane peptide encapsulated in the Poly(lactic acid)-Poly(ethylene glycol) nanoparticulate self-adjuvanting delivery system protects mice against a Chlamydia muridarum genital tract challenge by stimulating robust systemic and local mucosal immune responses. Front Immunol. 2018;9:2369.
  • O’Meara CP, Armitage CW, Kollipara A, et al. Induction of partial immunity in both males and females is sufficient to protect females against sexual transmission of Chlamydia. Mucosal Immunol. 2016;9(4):88–1076.
  • Tifrea DF, Pal S, de la Maza LM, et al. Chlamydia trachomatis MOMP vaccine elicits cross-serogroup protection in mice against vaginal shedding and infertility. J Infect Dis. 2020;221(2):191–200.
  • Wern JE, Sorensen MR, Olsen AW, et al. Simultaneous subcutaneous and intranasal administration of a CAF01-adjuvanted Chlamydia vaccine elicits elevated IgA and protective Th1/Th17 responses in the genital tract. Front Immunol. 2017;8:569.
  • Olsen AW, Follmann F, Erneholm K, et al. Protection against Chlamydia trachomatis infection and upper genital tract pathological changes by vaccine-promoted neutralizing antibodies directed to the VD4 of the major outer membrane protein. J Infect Dis. 2015;212(6):89–978.
  • Olsen AW, Lorenzen EK, Rosenkrands I, et al. Protective effect of vaccine promoted neutralizing antibodies against the intracellular pathogen Chlamydia trachomatis. Front Immunol. 2017;8:1652.
  • Erneholm K, Lorenzen E, Boje S, et al. Genital infiltrations of CD4(+) and CD8(+) T Lymphocytes, IgA(+) and IgG(+) plasma cells and intra-mucosal lymphoid follicles associate with protection against genital Chlamydia trachomatis infection in minipigs intramuscularly immunized with UV-inactivated bacteria adjuvanted with CAF01. Front Microbiol. 2019;10:197.
  • Lorenzen E, Follmann F, Bøje S, et al. Intramuscular priming and intranasal boosting induce strong genital immunity through secretory IgA in minipigs infected with Chlamydia trachomatis. Front Immunol. 2015;6:6.
  • Boje S, Olsen AW, Erneholm K, et al. A multi-subunit Chlamydia vaccine inducing neutralizing antibodies and strong IFN-gamma(+) CMI responses protects against a genital infection in minipigs. Immunol Cell Biol. 2016;94(2):95–185.
  • Abraham S, Juel HB, Bang P, et al. Safety and immunogenicity of the Chlamydia vaccine candidate CTH522 adjuvanted with CAF01 liposomes or aluminium hydroxide: a first-in-human, randomised, double-blind, placebo-controlled, Phase 1 trial. Lancet Infect Dis. 2019;19(10):100–1091.
  • Henderson IR, Lam AC. Polymorphic proteins of Chlamydia spp–autotransporters beyond the Proteobacteria. Trends Microbiol. 2001;9(12):8–573.
  • Swanson KA, Taylor LD, Frank SD, et al. Chlamydia trachomatis polymorphic membrane protein D is an oligomeric autotransporter with a higher-order structure. Infect Immun. 2009;77(1):16–508.
  • Carrasco JA, Tan C, Rank RG, et al. Altered developmental expression of polymorphic membrane proteins in penicillin-stressed Chlamydia trachomatis. Cell Microbiol. 2011;13(7):25–1014.
  • Tan C, Hsia RC, Shou H, et al. Variable expression of surface-exposed polymorphic membrane proteins in in vitro-grown Chlamydia trachomatis. Cell Microbiol. 2010;12(2):87–174.
  • Nunes A, Gomes JP, Mead S, et al. Comparative expression profiling of the Chlamydia trachomatis pmp gene family for clinical and reference strains. PLoS One. 2007;2(9):e878.
  • Van Lent S, Creasy HH, Myers GS, et al. Organization, and size of polymorphic membrane protein coding sequences as well as the most conserved pmp protein differ within and across Chlamydia species. J Mol Microbiol Biotechnol. 2016;26(5):44–333.
  • Vasilevsky S, Stojanov M, Greub G, et al. Chlamydial polymorphic membrane proteins: regulation, function and potential vaccine candidates. Virulence. 2016;7(1):11–22.
  • Becker E, Hegemann JH. All subtypes of the Pmp adhesin family are implicated in Chlamydial virulence and show species-specific function. Microbiologyopen. 2014;3(4):56–544.
  • Paes W, Brown N, Brzozowski AM, et al. Recombinant polymorphic membrane protein D in combination with a novel, second-generation lipid adjuvant protects against intra-vaginal Chlamydia trachomatis infection in mice. Vaccine. 2016;34(35):31–4123.
  • Muller T, Becker E, Stallmann S, et al. Vaccination with the polymorphic membrane protein A reduces Chlamydia muridarum induced genital tract pathology. Vaccine. 2017;35(21):10–2801.
  • Inic-Kanada A, Stojanovic M, Schlacher S, et al. Delivery of a chlamydial adhesin N-PmpC subunit vaccine to the ocular mucosa using particulate carriers. PLoS One. 2015;10(12):e0144380.
  • Karunakaran KP, Yu H, Jiang X, et al. Outer membrane proteins preferentially load MHC class II peptides: implications for a Chlamydia trachomatis T cell vaccine. Vaccine. 2015;33(18):66–2159.
  • Pal S, Favaroni A, Tifrea DF, et al. Comparison of the nine polymorphic membrane proteins of Chlamydia trachomatis for their ability to induce protective immune responses in mice against a C. muridarum challenge. Vaccine. 2017;35(19):9–2543.
  • Yang Z, Tang L, Sun X, et al. Characterization of CPAF critical residues and secretion during Chlamydia trachomatis infection. Infect Immun. 2015;83(6):41–2234.
  • Dong F, Zhong Y, Arulanandam B, et al. Production of a proteolytically active protein, Chlamydial protease/proteasome-like activity factor, by five different Chlamydia species. Infect Immun. 2005;73(3):72–1868.
  • Wang J, Zhang Y, Lu C, et al. A genome-wide profiling of the humoral immune response to Chlamydia trachomatis infection reveals vaccine candidate antigens expressed in humans. J Immunol. 2010;185(3):80–1670.
  • Budrys NM, Gong S, Rodgers AK, et al. Chlamydia trachomatis antigens recognized in women with tubal factor infertility, normal fertility, and acute infection. Obstet Gynecol. 2012;119(5):16–1009.
  • Rockey DD, Wang J, Lei L, et al. Chlamydia vaccine candidates and tools for Chlamydial antigen discovery. Expert Rev Vaccines. 2009;8(10):77–1365.
  • Li W, Guentzel MN, Seshu J, et al. Induction of cross-serovar protection against genital chlamydial infection by a targeted multisubunit vaccination approach. Clin Vaccine Immunol. 2007;14(12):44–1537.
  • Murthy AK, Li W, Guentzel MN, et al. Vaccination with the defined chlamydial secreted protein CPAF induces robust protection against female infertility following repeated genital chlamydial challenge. Vaccine. 2011;29(14):22–2519.
  • Li W, Murthy AK, Lanka GK, et al. A T cell epitope-based vaccine protects against chlamydial infection in HLA-DR4 transgenic mice. Vaccine. 2013;31(48):8–5722.
  • Wali S, Gupta R, Yu JJ, et al. Chlamydial protease-like activity factor mediated protection against C trachomatis in guinea pigs. Immunol Cell Biol. 2017;95(5):60–454.
  • Peterson EM, Markoff BA, Schachter J, et al. The 7.5-kb plasmid present in Chlamydia trachomatis is not essential for the growth of this microorganism. Plasmid. 1990;23(2):8–144.
  • Palmer L, Falkow S. A common plasmid of Chlamydia trachomatis. Plasmid. 1986;16(1):52–62.
  • Chen D, Lei L, Lu C, et al. Characterization of Pgp3, a Chlamydia trachomatis plasmid-encoded immunodominant antigen. J Bacteriol. 2010;192(22):24–6017.
  • Li Z, Chen D, Zhong Y, et al. The Chlamydial plasmid-encoded protein Pgp3 is secreted into the cytosol of Chlamydia-infected cells. Infect Immun. 2008;76(8):28–3415.
  • Liu Y, Huang Y, Yang Z, et al. Plasmid-encoded Pgp3 is a major virulence factor for Chlamydia muridarum to induce hydrosalpinx in mice. Infect Immun. 2014;82(12):35–5327.
  • Donati M, Sambri V, Comanducci M, et al. DNA immunization with Pgp3 gene of Chlamydia trachomatis inhibits the spread of Chlamydial infection from the lower to the upper genital tract in C3H/HeN mice. Vaccine. 2003;21(11–12):93–1089.
  • Li Z, Wang S, Wu Y, et al. Immunization with Chlamydial plasmid protein pORF5 DNA vaccine induces protective immunity against genital chlamydial infection in mice. Sci China C Life Sci. 2008;51(11):80–973.
  • Luan X, Peng B, Li Z, et al. Vaccination with MIP or Pgp3 induces cross-serovar protection against chlamydial genital tract infection in mice. Immunobiology. 2019;224(2):30–223.
  • O’Meara CP, Armitage CW, Andrew DW, et al. Multistage vaccines containing outer membrane, type III secretion system and inclusion membrane proteins protects against a Chlamydia genital tract infection and pathology. Vaccine. 2017;35(31):8–3883.
  • Yu H, Karunakaran KP, Jiang X, et al. Chlamydia muridarum T cell antigens and adjuvants that induce protective immunity in mice. Infect Immun. 2012;80(4):8–1510.
  • Cheng C, Jain P, Pal S, et al. Assessment of the role in protection and pathogenesis of the Chlamydia muridarum V-type ATP synthase subunit A (AtpA) (TC0582). Microbes Infect. 2014;16(2):33–123.
  • Tifrea DF, Barta ML, Pal S, et al. Computational modeling of TC0583 as a putative component of the Chlamydia muridarum V-type ATP synthase complex and assessment of its protective capabilities as a vaccine antigen. Microbes Infect. 2016;18(4):53–245.
  • Kaufhold RM, Boddicker MA, Field JA, et al. Evaluating potential vaccine antigens in both the Chlamydia trachomatis and Chlamydia muridarum Intravaginal mouse challenge models. World J Vaccines. 2019;9(2):49–69.
  • Koroleva EA, Kobets NV, Shcherbinin DN, et al. Chlamydial Type III secretion system needle protein induces protective immunity against Chlamydia muridarum intravaginal infection. Biomed Res Int. 2017;2017:3865802.
  • LIang S. Intranasal vaccination with a chimeric chlamydial antigen BD584 confers protection against Chlamydia trachomatis genital tract infection. 2020;6(1):7–010. J Clin Vaccine Immunol.
  • Picard MD, Bodmer JL, Gierahn TM, et al. Resolution of Chlamydia trachomatis infection is associated with a distinct cell response profile. Clin Vaccine Immunol. 2015;22(11):18–1206.
  • Lu C, Sun Z, Chen H, et al. Proteome array of antibody responses to Chlamydia trachomatis infection in nonhuman primates. Life Sci. 2020;248:117444.
  • Shiragannavar S, Madagi S, Hosakeri J, et al. In silico vaccine design against Chlamydia trachomatis infection. Netw Model Anal Health Inform Bioinform. 2020;9(1):39.
  • Stojanovic M, Lukic I, Marinkovic E, et al. Cross-reactive effects of vaccines: heterologous immunity between Tetanus and Chlamydia. Vaccines (Basel). 2020;8(4). DOI:10.3390/vaccines8040719.
  • Pal S, Peterson EM. de la Maza LM. New murine model for the study of Chlamydia trachomatis genitourinary tract infections in males. Infect Immun. 2004;72(7):6–4210.
  • Pal S, Tifrea DF. de la Maza LM. Characterization of the horizontal and vertical sexual transmission of Chlamydia genital infections in a new mouse model. Infect Immun. 2019;87(7). DOI:10.1128/IAI.00834-18.
  • Kari L, Whitmire WM, Crane DD, et al. Chlamydia trachomatis native major outer membrane protein induces partial protection in nonhuman primates: implication for a trachoma transmission-blocking vaccine. J Immunol. 2009;182(12):70–8063.
  • Pal S, Ausar SF, Tifrea DF, et al. Protection of outbred mice against a vaginal challenge by a Chlamydia trachomatis serovar E recombinant major outer membrane protein vaccine is dependent on phosphate substitution in the adjuvant. Hum Vaccin Immunother. 2020;1–11.
  • Pal S, Tifrea DF, Follmann F, et al. The cationic liposomal adjuvants CAF01 and CAF09 formulated with the major outer membrane protein elicit robust protection in mice against a Chlamydia muridarum respiratory challenge. Vaccine. 2017;35(13):11–1705.
  • Johnson RM, Yu H, Kerr MS, et al. PmpG303-311, a protective vaccine epitope that elicits persistent cellular immune responses in Chlamydia muridarum-immune mice. Infect Immun. 2012;80(6):11–2204.
  • Nanishi E, Dowling DJ, Levy O. Toward precision adjuvants: optimizing science and safety. Curr Opin Pediatr. 2020;32(1):38–125.
  • Yu H, Jiang X, Shen C, et al. Chlamydia muridarum T-cell antigens formulated with the adjuvant DDA/TDB induce immunity against infection that correlates with a high frequency of gamma interferon (IFN-gamma)/tumor necrosis factor alpha and IFN-gamma/interleukin-17 double-positive CD4+ T cells. Infect Immun. 2010;78(5):82–2272.
  • Boddicker MA, Kaufhold RM, Cox KS, et al. A novel LNP-Based Chlamydia subunit vaccine formulation that induces Th1 responses without upregulating IL-17 provides equivalent protection in mice as formulations that induced IL-17 and Th1 cytokines. World j vaccines. 2020;10(4):55–75.
  • Jiang J, Fisher EM, Hensley SE, et al. Antigen sparing and enhanced protection using a novel rOv-ASP-1 adjuvant in aqueous formulation with influenza vaccines. Vaccine. 2014;32(23):702–2696.
  • Tifrea DF, Pal S, Le Bon C, et al. Co-delivery of amphipol-conjugated adjuvant with antigen, and adjuvant combinations, enhance immune protection elicited by a membrane protein-based vaccine against a mucosal challenge with Chlamydia. Vaccine. 2018;36(45):9–6640.
  • Tifrea DF, Pal S, Le Bon C, et al. Improved protection against Chlamydia muridarum using the native major outer membrane protein trapped in Resiquimod-carrying Amphipols and effects in protection with addition of a Th1 (CpG-1826) and a Th2 (Montanide ISA 720) adjuvant. Vaccine. 2020;38(28):22–4412.
  • Lewis DJ, Huo Z, Barnett S, et al. Transient facial nerve paralysis (Bell’s palsy) following intranasal delivery of a genetically detoxified mutant of Escherichia coli heat labile toxin. PLoS One. 2009;4(9):e6999.
  • Wang L, Zhu C, Zhang T, et al. Nonpathogenic colonization with Chlamydia in the gastrointestinal tract as oral vaccination for inducing transmucosal protection. Infect Immun. 2018;86(2). DOI:10.1128/IAI.00630-17.
  • Zhu C, Lin H, Tang L, et al. Oral Chlamydia vaccination induces transmucosal protection in the airway. Vaccine. 2018;36(16):8–2061.
  • Christensen D, Mortensen R, Rosenkrands I, et al. Th17 cells are established as resident memory cells in the lung and promote local IgA responses. Mucosal Immunol. 2017;10(1):70–260.
  • Lorenzen E, Follmann F, Boje S, et al. Intramuscular priming and intranasal boosting induce strong genital immunity through secretory IgA in minipigs infected with Chlamydia trachomatis. Front Immunol. 2015;6:628.
  • Nguyen N, Olsen AW, Lorenzen E, et al. Parenteral vaccination protects against transcervical infection with Chlamydia trachomatis and generate tissue-resident T cells post-challenge. NPJ Vaccines. 2020;5(1):7.
  • Knudsen NP, Olsen A, Buonsanti C, et al. Different human vaccine adjuvants promote distinct antigen-independent immunological signatures tailored to different pathogens. Sci Rep. 2016;6(1):19570.
  • Rose F, Wern JE, Gavins F, et al. A strong adjuvant based on glycol-chitosan-coated lipid-polymer hybrid nanoparticles potentiates mucosal immune responses against the recombinant Chlamydia trachomatis fusion antigen CTH522. J Control Release. 2018;271:88–97.
  • Tifrea DF, Pal S, Fairman J, et al. Protection against a Chlamydial respiratory challenge by a chimeric vaccine formulated with the Chlamydia muridarum major outer membrane protein variable domains using the Neisseria lactamica porin B as a scaffold. NPJ Vaccines. 2020;5(1):37.
  • Jiang P, Du W, Xiong Y, et al. Hepatitis B virus core antigen as a carrier for Chlamydia trachomatis MOMP multi-epitope peptide enhances protection against genital Chlamydial infection. Oncotarget. 2015;6(41):92–43281.
  • Jiang J, Liu G, Kickhoefer VA, et al. A protective vaccine against Chlamydia genital infection using vault nanoparticles without an added adjuvant. Vaccines (Basel). 2017;5(1). DOI:10.3390/vaccines5010003.
  • Badamchi-Zadeh A, McKay PF, Korber BT, et al. A multi-component prime-boost vaccination regimen with a consensus MOMP antigen enhances Chlamydia trachomatis clearance. Front Immunol. 2016;7:162.
  • Sahu R, Dixit S, Verma R, et al. A nanovaccine formulation of Chlamydia recombinant MOMP encapsulated in PLGA 85:15 nanoparticles augments CD4(+) effector (CD44(high) CD62L(low)) and memory (CD44(high) CD62L(high)) T-cells in immunized mice. Nanomedicine. 2020;29:102257.
  • Jiang P, Cai Y, Chen J, et al. Evaluation of tandem Chlamydia trachomatis MOMP multi-epitopes vaccine in BALB/c mice model. Vaccine. 2017;35(23):103–3096.
  • Wang L, Cai Y, Xiong Y, et al. DNA plasmid vaccine carrying Chlamydia trachomatis (Ct) major outer membrane and human papillomavirus 16L2 proteins for anti-Ct infection. Oncotarget. 2017;8(20):51–33241.
  • Pais R, Omosun Y, Igietseme JU, et al. Route of vaccine administration influences the impact of fms-like tyrosine kinase 3 Ligand (Flt3L) on Chlamydial-specific protective immune responses. Front Immunol. 2019;10:1577.
  • Kuczkowska K, Myrbraten I, Overland L, et al. Lactobacillus plantarum producing a Chlamydia trachomatis antigen induces a specific IgA response after mucosal booster immunization. PLoS One. 2017;12(5):e0176401.
  • Sahu R, Verma R, Dixit S, et al. Future of human Chlamydia vaccine: potential of self-adjuvanting biodegradable nanoparticles as safe vaccine delivery vehicles. Expert Rev Vaccines. 2018;17(3):27–217.
  • Rodrigues L, Raftopoulos KN, Tandrup Schmidt S, et al. Immune responses induced by nano-self-assembled lipid adjuvants based on a monomycoloyl glycerol analogue after vaccination with the Chlamydia trachomatis major outer membrane protein. J Control Release. 2018;285:12–22.
  • Plotkin SA. Vaccines: correlates of vaccine-induced immunity. Clin Infect Dis. 2008;47(3):9–401.
  • Cheng C, Pal S, Tifrea D, et al. A vaccine formulated with a combination of TLR-2 and TLR-9 adjuvants and the recombinant major outer membrane protein elicits a robust immune response and significant protection against a Chlamydia muridarum challenge. Microbes Infect. 2014;16(3):52–244.
  • Su F, Patel GB, Hu S, et al. Induction of mucosal immunity through systemic immunization: phantom or reality? Hum Vaccin Immunother. 2016;12(4):9–1070.
  • Giuliano AR, Palefsky JM, Goldstone S, et al. Efficacy of quadrivalent HPV vaccine against HPV Infection and disease in males. N Engl J Med. 2011;364(5):11–401.
  • Plotnikoff KM, Ogilvie GS, Smith L, et al. Factors associated with interest in bacterial sexually transmitted infection vaccines at two large sexually transmitted infection clinics in British Columbia, Canada. Sex Transm Infect. 2020;96(7):494–500.
  • Ditkowsky J, Rahman A, Hammerschlag MR, et al. Cost-benefit analysis of a Chlamydia trachomatis vaccine program in adolescent girls in the United States. J Pediatric Infect Dis Soc. 2018;7(4):296–302.
  • Owusu-Edusei K Jr., Chesson HW, Gift TL, et al. Cost-effectiveness of Chlamydia vaccination programs for young women. Emerg Infect Dis. 2015;21(6):8–960.
  • de la Maza MA. de la Maza LM. A new computer model for estimating the impact of vaccination protocols and its application to the study of Chlamydia trachomatis genital infections. Vaccine. 1995;13(1):27–119.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.