756
Views
5
CrossRef citations to date
0
Altmetric
Review

Development of thermostable vaccine adjuvants

&
Pages 497-517 | Received 30 Nov 2020, Accepted 09 Mar 2021, Published online: 26 Jun 2021

References

  • Karp CL, Lans D, Esparza J, et al., Evaluating the value proposition for improving vaccine thermostability to increase vaccine impact in low and middle-income countries. Vaccine. 2015;33(30): 3471–3479.
  • Lee BY, Wedlock PT, Haidari LA, et al. Economic impact of thermostable vaccines. Vaccine. 2017;35(23):3135–3142.
  • Kristensen DD, Lorenson T, Bartholomew K, et al. Can thermostable vaccines help address cold-chain challenges? Results from stakeholder interviews in six low- and middle-income countries. Vaccine. 2016;34(7):899–904.
  • Kristensen D, Chen D. Stabilization of vaccines: lessons learned. Hum Vaccines. 2010;6(3):227–231.
  • Kumru OS, Joshi SB, Smith DE, et al. Vaccine instability in the cold chain: mechanisms, analysis and formulation strategies. Biologicals. 2014;42(5):237–259.
  • McKee AS, Munks MW, Marrack P. How do adjuvants work? Important considerations for new generation adjuvants. Immunity. 2007;27(5):687–690.
  • Reed SG, Orr MT, Fox CB. Key roles of adjuvants in modern vaccines. Nat Med. 2013;19(12):1597–1608.
  • Campbell JD. Development of the CpG Adjuvant 1018: a case study. In: Fox CB, editor. Vaccine adjuvants: methods and protocols. New York: Springer New York; 2017. p. 15–27.
  • Fox CB, Haensler J. An update on safety and immunogenicity of vaccines containing emulsion-based adjuvants. Expert Rev Vaccines. 2013;12(7):747–758.
  • HogenEsch H, O’Hagan DT, Fox CB. Optimizing the utilization of aluminum adjuvants in vaccines: you might just get what you want. Npj Vaccines. 2018;3(1):51.
  • Singh M, O’Hagan D. Advances in vaccine adjuvants. Nat Biotechnol. 1999;17(11):1075–1081.
  • Didierlaurent AM, Collignon C, Bourguignon P, et al. Enhancement of adaptive immunity by the human vaccine adjuvant as01 depends on activated dendritic cells. J Immunol. 2014;193(4):1920–1930.
  • Hanson CM, George AM, Sawadogo A, et al. Is freezing in the vaccine cold chain an ongoing issue? A literature review. Vaccine. 2017;35(17):2127–2133.
  • Das MK, Arora NK, Mathew T, et al. Temperature integrity and exposure of vaccines to suboptimal temperatures in cold chain devices at different levels in three states of India. Trop Dis Travel Med Vaccines. 2020; 6:8.
  • Zipursky S, Djingarey MH, Lodjo JC, et al. Benefits of using vaccines out of the cold chain: delivering meningitis A vaccine in a controlled temperature chain during the mass immunization campaign in Benin. Vaccine. 2014;32(13):1431–1435.
  • Lydon P, Zipursky S, Tevi-Benissan C, et al. Economic benefits of keeping vaccines at ambient temperature during mass vaccination: the case of meningitis A vaccine in Chad. Bull World Health Organ. 2014;92(2):86–92.
  • World Health Organization. Controlled temperature chain: strategic roadmap for priority vaccines 2017-2020. WHO/IVB/17.20, (2017).
  • World Health Organization. Temperature sensitivity of vaccines. WHO/IVB/06.10, (2006).
  • World Health Organization. PQS performance specification. WHO/PQS/E006/IN05.4, (2020).
  • Dolgin E. COVID-19 vaccines poised for launch, but impact on pandemic unclear. Nat Biotechnol. 2020 Nov 25. doi: 10.1038/d41587-020-00022-y. Epub ahead of print. PMID: 33239758.
  • Kaiser J. Temperature concerns could slow the rollout of new coronavirus vaccines. Science, 2020 [Cited 2020 Nov 30]. https://www.sciencemag.org/news/2020/11/temperature-concerns-could-slow-rollout-new-coronavirus-vaccines
  • Lowe D. Cold chain (and colder chain) distribution. In the pipeline, Science Translational Medicine, 2020 [Cited 2020 Nov 30]. https://blogs.sciencemag.org/pipeline/archives/2020/08/31/cold-chain-and-colder-chain-distribution
  • Pfizer Inc., Pfizer and BioNTech submit COVID-19 vaccine stability data at standard freezer temperature to the U.S. FDA, 2021 [Cited 2021 Feb 21]. https://www.pfizer.com/news/press-release/press-release-detail/pfizer-and-biontech-submit-covid-19-vaccine-stability-data
  • Marcandalli J, Fiala B, Ols S, et al. Induction of potent neutralizing antibody responses by a designed protein nanoparticle vaccine for respiratory syncytial virus. Cell. 2019;176(6):1420–1431.e1417.
  • Atmar RL, Bernstein DI, Harro CD, et al. Norovirus vaccine against experimental human Norwalk Virus illness. N Engl J Med. 2011;365(23):2178–2187.
  • Foged C. Thermostable subunit vaccines for pulmonary delivery: how close are we? Curr Pharm Des. 2016;22(17):2561–2576.
  • Kanojia G, Have R, Soema PC, et al. Developments in the formulation and delivery of spray dried vaccines. Hum Vaccines Immunother. 2017;13(10):2364–2378.
  • Gomez M, Archer M, Barona D, et al. Microparticle encapsulation of a tuberculosis subunit vaccine candidate containing a nanoemulsion adjuvant via spray drying. Eur J Pharm Biopharm. 2021; 163: 23–37.
  • Chan MY, Dutill TS, Kramer RM. Lyophilization of adjuvanted vaccines: methods for formulation of a thermostable freeze-dried product. Methods Mol Biol. 2017;1494:215–226.
  • PATH, Summary of stability data for licensed vaccines, 2012 [Cited 2020 Nov 30]. https://path.azureedge.net/media/documents/TS_vaccine_stability_table.pdf
  • Walters RH, Bhatnagar B, Tchessalov S, et al. Next generation drying technologies for pharmaceutical applications. J Pharm Sci. 2014;103(9):2673–2695.
  • Alzhrani RF, Xu H, Moon C, et al. Thin-film freeze-drying is a viable method to convert vaccines containing aluminum salts from liquid to dry powder. In: Pfeifer BA, Hill A, editors. Vaccine delivery technology: methods and protocols. New York, NY: Springer US; 2021. p. 489–498.
  • Gomez M, McCollum J, Wang H, et al. Development of a formulation platform for a spray-dried, inhalable tuberculosis vaccine candidate. Int J Pharm. 2021;593:120121.
  • Ziaee A, Albadarin AB, Padrela L, et al. Spray drying of pharmaceuticals and biopharmaceuticals: critical parameters and experimental process optimization approaches. Eur J Pharm Sci. 2019;127:300–318.
  • Siew A. Exploring the use of aseptic spray drying in the manufacture of biopharmaceutical injectables. Pharm Technol. 2016;40(7):24–27.
  • Emami F, Vatanara A, Park EJ, et al. Drying technologies for the stability and bioavailability of biopharmaceuticals. Pharmaceutics. 2018;10(3):131.
  • Chouvenc P, Francon A, Process for stabilizing an adjuvant containing vaccine composition, PCT/EP2009/052460, September 11, 2009.
  • Clénet D, Imbert F, Probeck P, et al. Advanced kinetic analysis as a tool for formulation development and prediction of vaccine stability. J Pharm Sci. 2014;103(10):3055–3064.
  • World Health Organization. Guidelines on stability evaluation of vaccines. WHO/BS/06.2049 (2006).
  • Clapp T, Siebert P, Chen D, et al. Vaccines with aluminum-containing adjuvants: optimizing vaccine efficacy and thermal stability. J Pharm Sci. 2011;100(2):388–401.
  • Fortpied J, Wauters F, Rochart C, et al. Stability of an aluminum salt-adjuvanted protein D-conjugated pneumococcal vaccine after exposure to subzero temperatures. Hum Vaccin Immunother. 2018;14(5):1243–1250.
  • Li X, Thakkar SG, Ruwona TB, et al. A method of lyophilizing vaccines containing aluminum salts into a dry powder without causing particle aggregation or decreasing the immunogenicity following reconstitution. J Control Release. 2015;204:38–50.
  • Braun LJ, Tyagi A, Perkins S, et al. Development of a freeze-stable formulation for vaccines containing aluminum salt adjuvants. Vaccine. 2009;27(1):72–79.
  • Maa YF, Shu C, Ameri M, et al. Optimization of an alum-adsorbed vaccine powder formulation for epidermal powder immunization. Pharm Res. 2003;20:969–977.
  • Jezek J, Chen D, Watson L, et al. A heat-stable hepatitis B vaccine formulation. Hum Vaccin. 2009;5(8):529–535.
  • Braun LJ, Jezek J, Peterson S, et al., Characterization of a thermostable hepatitis B vaccine formulation. Vaccine. 2009;27(34): 4609–4614.
  • Xue H, Yang B, Kristensen DD, et al. A freeze-stable formulation for DTwP and DTaP vaccines. Hum Vaccin Immunother. 2014;10(12):3607–3610.
  • Orr MT, Khandhar AP, Seydoux E, et al. Reprogramming the adjuvant properties of aluminum oxyhydroxide with nanoparticle technology. NPJ Vaccines. 2019;4(1–1). 10.1038/s41541-018-0094-0
  • Wang T, Zhen Y, Ma X, et al. Aluminum nanoparticles as an effective vaccine adjuvant-delivery system. ACS Appl Mater Interfaces. 2015;7(12):6391–6396.
  • Li X, Aldayel AM, Cui Z. Aluminum hydroxide nanoparticles show a stronger vaccine adjuvant activity than traditional aluminum hydroxide microparticles. J Control Release. 2014;173(148–157):148–157.
  • Yin X, Wang X, Zhang Z, et al. Demonstration of real-time and accelerated stability of hepatitis E vaccine with a combination of different physicochemical and immunochemical methods. J Pharm Biomed Anal. 2020;177:112880.
  • Shen Z, Rao Y, Tao S, et al. Unimpaired immunogenicity of yeast-expressed hepatitis B surface antigen stored at elevated temperatures. Acta Biochim Biophys Sin (Shanghai). 2016;48(12):1094–1100.
  • Lakatos K, McAdams D, White JA, et al. Formulation and preclinical studies with a trivalent rotavirus P2-VP8 subunit vaccine. Hum Vaccin Immunother. 2020;16(8):1957–1968.
  • Groome MJ, Fairlie L, Morrison J, et al. Safety and immunogenicity of a parenteral trivalent P2-VP8 subunit rotavirus vaccine: a multisite, randomised, double-blind, placebo-controlled trial. Lancet Infect Dis. 2020;20(7):851–863.
  • Roy CJ, Brey RN, Mantis NJ, et al. Thermostable ricin vaccine protects rhesus macaques against aerosolized ricin: epitope-specific neutralizing antibodies correlate with protection. Proc Natl Acad Sci U S A. 2015;112(12):3782–3787.
  • Hassett KJ, Cousins MC, Rabia LA, et al., Stabilization of a recombinant ricin toxin A subunit vaccine through lyophilization. Eur J Pharm Biopharm. 2013;85(2): 279–286.
  • Westfall J, Yates JL, Van Slyke G, et al., Thermal stability and epitope integrity of a lyophilized ricin toxin subunit vaccine. Vaccine. 2018;36(40): 5967–5976.
  • Hassett KJ, Meinerz NM, Semmelmann F, et al. Development of a highly thermostable, adjuvanted human papillomavirus vaccine. Eur J Pharm Biopharm. 2015;94:220–228.
  • Hassett KJ, Vance DJ, Jain NK, et al. Glassy-State Stabilization of a dominant negative inhibitor anthrax vaccine containing aluminum hydroxide and glycopyranoside lipid a adjuvants. J Pharm Sci. 2015;104(2):627–639.
  • Chisholm CF, Kang TJ, Dong M, et al. Thermostable Ebola virus vaccine formulations lyophilized in the presence of aluminum hydroxide. Eur J Pharm Biopharm. 2019;136:213–220.
  • Autumn Smiley M, Sanford DC, Triplett CA, et al. Comparative immunogenicity and efficacy of thermostable (lyophilized) and liquid formulation of anthrax vaccine candidate AV7909. Vaccine. 2019;37(43):6356–6361.
  • clinicaltrials.gov. Anthrax AV7909 liquid vs lyophilized. NCT04660201, (2021).
  • Thakkar SG, Ruwona TB, Williams RO 3rd, et al. The immunogenicity of thin-film freeze-dried, aluminum salt-adjuvanted vaccine when exposed to different temperatures. Hum Vaccin Immunother. 2017;13(4):936–946.
  • Chen D, Kapre S, Goel A, et al., Thermostable formulations of a hepatitis B vaccine and a meningitis A polysaccharide conjugate vaccine produced by a spray drying method. Vaccine. 2010;28(31): 5093–5099.
  • Sievers RE, Quinn BP, Cape SP, et al. Near-critical fluid micronization of stabilized vaccines, antibiotics and anti-virals. J Supercrit Fluids. 2007;42(3):385–391.
  • Corbett HJ, Fernando GJ, Chen X, et al. Skin vaccination against cervical cancer associated human papillomavirus with a novel micro-projection array in a mouse model. PLoS One. 2010;5(10):e13460.
  • Garcea RL, Meinerz NM, Dong M, et al. Single-administration, thermostable human papillomavirus vaccines prepared with atomic layer deposition technology. Npj Vaccines. 2020;5(1):45.
  • Wang G, Cao R-Y, Chen R, et al. Rational design of thermostable vaccines by engineered peptide-induced virus self-biomineralization under physiological conditions. Proc Nat Acad Sci. 2013;110(19):7619–7624.
  • Du P, Liu R, Sun S, et al. Biomineralization improves the thermostability of foot-and-mouth disease virus-like particles and the protective immune response induced. Nanoscale. 2019;11(47):22748–22761.
  • Makidon PE, Bielinska AU, Nigavekar SS, et al. Pre-clinical evaluation of a novel nanoemulsion-based hepatitis B mucosal vaccine. PLoS One. 2008;3(8):e2954.
  • Stanberry LR, Simon JK, Johnson C, et al. Safety and immunogenicity of a novel nanoemulsion mucosal adjuvant W805EC combined with approved seasonal influenza antigens. Vaccine. 2012;30(2):307–316.
  • clinicaltrials.gov. A safety and immunogenicity of intranasal nanoemulsion adjuvanted recombinant anthrax vaccine in healthy adults (IN NE-rPA). NCT04148118, (2020).
  • clinicaltrials.gov. Safety and immunogenicity study of inactivated nasal influenza vaccine NB-1008 administered by sprayer. NCT01354379, (2020).
  • Iyer V, Cayatte C, Marshall JD, et al. Feasibility of freeze-drying oil-in-water emulsion adjuvants and subunit proteins to enable single-vial vaccine drug products. J Pharm Sci. 2017;106(6):1490–1498.
  • Ivins B, Fellows P, Pitt L, et al. Experimental anthrax vaccines: efficacy of adjuvants combined with protective antigen against an aerosol Bacillus anthracis spore challenge in guinea pigs. Vaccine. 1995;13(18):1779–1784.
  • Orr MT, Kramer RM, Barnes VL, et al., Elimination of the cold-chain dependence of a nanoemulsion adjuvanted vaccine against tuberculosis by lyophilization. J Control Release. 2014;177(0): 20–26.
  • Kramer RM, Archer MC, Orr MT, et al. Development of a thermostable nanoemulsion adjuvanted vaccine against tuberculosis using a design-of-experiments approach. Int J Nanomedicine. 2018;13:3689–3711.
  • Barnes VL, Fedor DM, Williams S, et al. Lyophilization of an adjuvanted mycobacterium tuberculosis vaccine in a single-chamber pharmaceutical cartridge. AAPS PharmSciTech. 2017;18(6):2077–2084.
  • clinicaltrials.gov. Phase 1 clinical trial of single-vial ID93 + GLA-SE in healthy adults. NCT03722472, (2020).
  • Sprott GD, Dicaire CJ, Fleming LP, et al. Stability of liposomes prepared from archaeobacterical lipids and phosphatidylcholine mixtures. Cells Mater. 1996;6(1):16.
  • Choquet CG, Patel GB, Beveridge TJ, et al. Stability of pressure-extruded liposomes made from archaeobacterial ether lipids. Appl Microbiol Biotechnol. 1994;42(2–3):375–384.
  • Krishnan L, Sprott GD. Archaeosome adjuvants: immunological capabilities and mechanism(s) of action. Vaccine. 2008;26(17):2043–2055.
  • Jia Y, Chandan V, Akache B, et al. Assessment of stability of sulphated lactosyl archaeol archaeosomes for use as a vaccine adjuvant. J Liposome Res. 2020;1–9. 10.1080/08982104.2020.1786115
  • Krishnan L, Sprott GD. Archaeosomes as self-adjuvanting delivery systems for cancer vaccines. J Drug Target. 2003;11(11):515–524.
  • Krishnan L, Sad S, Patel GB, et al. Archaeosomes induce enhanced cytotoxic T lymphocyte responses to entrapped soluble protein in the absence of interleukin 12 and protect against tumor challenge. Cancer Res. 2003;63(10):2526–2534.
  • Higa LH, Corral RS, Morilla MJ, et al. Archaeosomes display immunoadjuvant potential for a vaccine against Chagas disease. Hum Vaccin Immunother. 2013;9(2):409–412.
  • Higa LH, Schilrreff P, Perez AP, et al. Ultradeformable archaeosomes as new topical adjuvants. Nanomedicine. 2012;8(8):1319–1328.
  • Crowe JH, Crowe LM, Carpenter JF, et al. Stabilization of dry phospholipid bilayers and proteins by sugars. Biochem J. 1987;242(1):1–10.
  • Ingvarsson PT, Yang M, Nielsen HM, et al. Stabilization of liposomes during drying. Expert Opin Drug Deliv. 2011;8(3):375–388.
  • Sun WQ, Leopold AC, Crowe LM, et al. Stability of dry liposomes in sugar glasses. Biophys. J. 1996;70(4):1769–1776.
  • Christensen D, Foged C, Rosenkrands I, et al. Trehalose preserves DDA/TDB liposomes and their adjuvant effect during freeze-drying. Biochim Biophys Acta Biomembr. 2007;1768(9):2120–2129.
  • Yusuf H, Ali AA, Orr N, et al. Novel freeze-dried DDA and TPGS liposomes are suitable for nasal delivery of vaccine. Int J Pharm. 2017;533(1):179–186.
  • Mabrouk MT, Huang WC, Deng B, et al. Lyophilized, antigen-bound liposomes with reduced MPLA and enhanced thermostability. Int J Pharm. 2020;589:119843.
  • Wang N, Wang T. Preparation of multifunctional liposomes as a stable vaccine delivery-adjuvant system by procedure of emulsification-lyophilization. Methods Mol Biol. 2016;1404:635–649.
  • Wang N, Wang T, Zhang M, et al. Using procedure of emulsification-lyophilization to form lipid A-incorporating cochleates as an effective oral mucosal vaccine adjuvant-delivery system (VADS). Int J Pharm. 2014;468(1–2):39–49.
  • Wang N, Wang T, Zhang M, et al. Mannose derivative and lipid A dually decorated cationic liposomes as an effective cold chain free oral mucosal vaccine adjuvant-delivery system. Eur J Pharm Biopharm. 2014;88(1):194–206.
  • Ebensen T, Paukner S, Link C, et al. Bacterial ghosts are an efficient delivery system for DNA vaccines. J Immunol. 2004;172(11):6858–6865.
  • Mayr UB, Walcher P, Azimpour C, et al. Bacterial ghosts as antigen delivery vehicles. Adv Drug Deliv Rev. 2005;57(9):1381–1391.
  • Eko FO, Schukovskaya T, Lotzmanova EY, et al. Evaluation of the protective efficacy of Vibrio cholerae ghost (VCG) candidate vaccines in rabbits. Vaccine. 2003;21(25–26):3663–3674.
  • Eko FO, Lubitz W, McMillan L, et al. Recombinant Vibrio cholerae ghosts as a delivery vehicle for vaccinating against Chlamydia trachomatis. Vaccine. 2003;21(15):1694–1703.
  • Lacaille-Dubois M-A. Updated insights into the mechanism of action and clinical profile of the immunoadjuvant QS-21: a review. Phytomedicine. 2019;60:152905.
  • Fortpied J, Collignon S, Moniotte N, et al. The thermostability of the RTS,S/AS01 malaria vaccine can be increased by co-lyophilizing RTS,S and AS01. Malar J. 2020;19(1):202.
  • Ingvarsson PT, Schmidt ST, Christensen D, et al. Designing CAF-adjuvanted dry powder vaccines: spray drying preserves the adjuvant activity of CAF01. J Control Release. 2013;167(3):256–264.
  • Thakur A, Ingvarsson PT, Schmidt ST, et al. Immunological and physical evaluation of the multistage tuberculosis subunit vaccine candidate H56/CAF01 formulated as a spray-dried powder. Vaccine. 2018;36(23):3331–3339.
  • Mody K, Mahony D, Mahony TJ, et al. Freeze-drying of protein-loaded nanoparticles for vaccine delivery. Drug Deliv Lett. 2012;2(2):83–91
  • Phan HT, Haes AJ. What does nanoparticle stability mean? J Phys Chem C. 2019;123(27):16495–16507.
  • Canali E, Bolchi A, Spagnoli G, et al. A high-performance thioredoxin-based scaffold for peptide immunogen construction: proof-of-concept testing with a human papillomavirus epitope. Sci Rep. 2014;4:4729.
  • Spagnoli G, Pouyanfard S, Cavazzini D, et al. Broadly neutralizing antiviral responses induced by a single-molecule HPV vaccine based on thermostable thioredoxin-L2 multiepitope nanoparticles. Sci Rep. 2017;7:18000.
  • Marcandalli J, Fiala B, Ols S, et al. Induction of potent neutralizing antibody responses by a designed protein nanoparticle vaccine for respiratory syncytial virus. Cell. 2019;176(6):1420–1431.e1417.
  • Cruz-Reséndiz A, Zepeda-Cervantes J, Sampieri A, et al. A self-aggregating peptide: implications for the development of thermostable vaccine candidates. BMC Biotechnol. 2020;20(1). 10.1186/s12896-019-0592-9
  • Crecente-Campo J, Lorenzo-Abalde S, Mora A, et al. Bilayer polymeric nanocapsules: a formulation approach for a thermostable and adjuvanted E. coliantigen vaccine. J Control Release. 2018;286:20–32.
  • González-Aramundiz JV, Peleteiro M, Á G-F, et al. Protamine nanocapsules for the development of thermostable adjuvanted nanovaccines. Mol Pharm. 2018;15(12):5653–5664.
  • Sloat BR, Sandoval MA, Cui Z. Towards preserving the immunogenicity of protein antigens carried by nanoparticles while avoiding the cold chain. Int J Pharm. 2010;393(1–2):197–202.
  • Tang F, Li L, Chen D. Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv Mater. 2012;24(12):1504–1534.
  • Mody KT, Popat A, Mahony D, et al. Mesoporous silica nanoparticles as antigen carriers and adjuvants for vaccine delivery. Nanoscale. 2013;5(12):5167–5179.
  • Mody KT, Mahony D, Cavallaro AS, et al. Silica vesicle nanovaccine formulations stimulate long-term immune responses to the bovine viral diarrhoea virus E2 protein. PLoS One. 2015;10(12):e0143507.
  • D’Souza B, Shastri PN, Hammons G, et al. Immune-potentiation of pneumococcal capsular polysaccharide antigen using albumin microparticles. J. Pharmacovigil. 2018;6(3):261.
  • Gala RP, D’Souza M, Zughaier SM. Evaluation of various adjuvant nanoparticulate formulations for meningococcal capsular polysaccharide-based vaccine. Vaccine. 2016;34(28):3260–3267.
  • Ubale RV, D’souza MJ, Infield DT, et al. Formulation of meningococcal capsular polysaccharide vaccine-loaded microparticles with robust innate immune recognition. J Microencapsul. 2013;30(1):28–41.
  • Tumban E, Peabody J, Peabody DS, et al. A universal virus-like particle-based vaccine for human papillomavirus: longevity of protection and role of endogenous and exogenous adjuvants. Vaccine. 2013;31(41):4647–4654.
  • Saboo S, Tumban E, Peabody J, et al., Optimized formulation of a thermostable spray-dried virus-like particle vaccine against human papillomavirus. Mol Pharm. 2016;13(5): 1646–1655.
  • Belyakov IM, Ahlers JD. What role does the route of immunization play in the generation of protective immunity against mucosal pathogens? J Immunol. 2009;183(11):6883–6892.
  • Boddupalli BM, Mohammed ZNK, Nath RA, et al. Mucoadhesive drug delivery system: an overview. J Adv Pharm Technol Res. 2010;1(4):381–387.
  • Serradell MC, Rupil LL, Martino RA, et al. Efficient oral vaccination by bioengineering virus-like particles with protozoan surface proteins. Nat Commun. 2019;10(1):361.
  • Jelinek T, Kollaritsch H. Vaccination with Dukoral against travelers’ diarrhea (ETEC) and cholera. Expert Rev Vaccines. 2008;7(5):561–567.
  • Holmgren J, Lycke N, Czerkinsky C. Cholera toxin and cholera B subunit as oral-mucosal adjuvant and antigen vector systems. Vaccine. 1993;11(12):1179–1184.
  • Stratmann T. Cholera toxin subunit B as adjuvant––an accelerator in protective immunity and a break in autoimmunity. Vaccine. 2015;3(3):579–596.
  • European Medicines Agency, Dukoral product information, [Cited 2021 Jan 24] https://www.ema.europa.eu/en/documents/product-information/dukoral-epar-product-information_en.pdf
  • Odevall L, Hong D, Digilio L, et al. The Euvichol story – Development and licensure of a safe, effective and affordable oral cholera vaccine through global public private partnerships. Vaccine. 2018;36(45):6606–6614.
  • Katinger A, Lubitz W, Szostak MP, et al. Pigs aerogenously immunized with genetically inactivated (ghosts) or irradiated Actinobacillus pleuropneumoniae are protected against a homologous aerosol challenge despite differing in pulmonary cellular and antibody responses. J Biotechnol. 1999;73(2–3):251–260.
  • Summerton NA, Welch RW, Bondoc L, et al. Toward the development of a stable, freeze-dried formulation of Helicobacter pylori killed whole cell vaccine adjuvanted with a novel mutant of Escherichia coli heat-labile toxin. Vaccine. 2010;28(5):1404–1411.
  • Akker FVD, Feil IK, Roach C, et al. Crystal structure of heat‐labile enterotoxin from Escherichia coli with increased thermostability introduced by an engineered disulfide bond in the A subunit. Protein Sci. 2008;6(12):2644–2649.
  • Amacker M, Smardon C, Mason L, et al. New GMP manufacturing processes to obtain thermostable HIV-1 gp41 virosomes under solid forms for various mucosal vaccination routes. NPJ Vaccines. 2020; 5(41): 10.1038/s41541-020-0190-9
  • Shakya AK, Chowdhury MYE, Tao W, et al. Mucosal vaccine delivery: current state and a pediatric perspective. J Control Release. 2016;240:394–413.
  • Saengkrit N, Saesoo S, Woramongkolchai N, et al. Dry formulations enhanced mucoadhesive properties and reduced cold chain handing of influenza vaccines. AAPSPharmSciTech. 2018;19(8):3763–3769.
  • El-Kamary SS, Pasetti MF, Mendelman PM, et al. Adjuvanted intranasal Norwalk virus-like particle vaccine elicits antibodies and antibody-secreting cells that express homing receptors for mucosal and peripheral lymphoid tissues. J Infect Dis. 2010;202(11):1649–1658.
  • Tyne A S, Jgy C, Shanahan E R, et al. TLR2-targeted secreted proteins from Mycobacterium tuberculosis are protective as powdered pulmonary vaccines. Vaccine. 2013;31(40):4322–4329.
  • Wang SH, Kirwan SM, Abraham SN, et al. Stable dry powder formulation for nasal delivery of anthrax vaccine. J Pharm Sci. 2012;101(1):31–47.
  • Longet S, Aversa V, O’Donnell D, et al., Thermostability of the coating, antigen and immunostimulator in an adjuvanted oral capsule vaccine formulation. Int J Pharm. 2017;534(1–2): 60–70.
  • Kim YC, Jarrahian C, Zehrung D, et al. Delivery systems for intradermal vaccination. Curr Top Microbiol Immunol. 2012;351:77–112.
  • Larrañeta E, Lutton REM, Woolfson AD, et al. Microneedle arrays as transdermal and intradermal drug delivery systems: materials science, manufacture and commercial development. Mater. Sci. Eng. R Rep. 2016;104:1–32.
  • Ellison TJ, Talbott GC, Henderson DR. VaxiPatch™, a novel vaccination system comprised of subunit antigens, adjuvants and microneedle skin delivery: an application to influenza B/Colorado/06/2017. Vaccine. 2020;38(43):6839–6848.
  • Stinson JA, Raja WK, Lee S, et al. Silk fibroin microneedles for transdermal vaccine delivery. ACS Biomater. Sci. Eng. 2017;3(3):360–369.
  • Poirier D, Renaud F, Dewar V, et al. Hepatitis B surface antigen incorporated in dissolvable microneedle array patch is antigenic and thermostable. Biomaterials. 2017;145(:256–265.
  • Weissmueller NT, Schiffter HA, Pollard AJ. Intradermal powder immunization with protein-containing vaccines. Expert Rev Vaccines. 2013;12(6):687–702.
  • Osorio JE, Zuleger CL, Burger M, et al. Immune responses to hepatitis B surface antigen following epidermal powder immunization. Immunol Cell Biol. 2003;81(1):52–58.
  • Chen D, Endres CAERL, Periwal SB, et al. Adjuvantation of epidermal powder immunization. Vaccine. 2001;19(20–22):2908–2917.
  • Chen D, Periwal SB, Larrivee K, et al. Serum and mucosal immune responses to an inactivated influenza virus vaccine induced by epidermal powder immunization. J Virol. 2001;75(17):7956–7965.
  • Chen D, Endres RL, Erickson CA, et al. Epidermal powder immunization using non-toxic bacterial enterotoxin adjuvants with influenza vaccine augments protective immunity. Vaccine. 2002;20(21–22):2671–2679.
  • Adali MB, Barresi AA, Boccardo G, et al. Spray freeze-drying as a solution to continuous manufacturing of pharmaceutical products in bulk. Processes. 2020;8(6):709.
  • Maa Y-F, Zhao L, Payne LG, et al. Stabilization of alum-adjuvanted vaccine dry powder formulations: mechanism and application. J Pharm Sci. 2003;92(2):319–332.
  • Hickey DK, Aldwell FE, Tan ZY, et al. Transcutaneous immunization with novel lipid-based adjuvants induces protection against gastric Helicobacter pylori infection. Vaccine. 2009;27(50):6983–6990.
  • Hung IF, Yap DY, Yip TP, et al. A double-blind randomized phase 2 controlled trial of intradermal hepatitis B vaccination with a topical Toll-like receptor 7 agonist imiquimod, in patients on dialysis. Clin Infect Dis. 2020;ciaa804
  • Hung IF, Zhang AJ, To KK, et al. Immunogenicity of intradermal trivalent influenza vaccine with topical imiquimod, a double blind randomized controlled trial. Clinl Infect Dis. 2014;59(9):1246–1255.
  • Hung IF-N, Zhang AJ, To KK-W, et al. Topical imiquimod before intradermal trivalent influenza vaccine for protection against heterologous non-vaccine and antigenically drifted viruses: a single-centre, double-blind, randomised, controlled phase 2b/3 trial. Lancet Infect Dis. 2016;16(2):209–218.
  • Tebas P, Kraynyak KA, Patel A, et al. Intradermal Syncon® Ebola GP DNA vaccine is temperature stable and safely demonstrates cellular and humoral immunogenicity advantages in healthy volunteers. J Infect Dis. 2019;220(3):400–410.
  • Doekhie A, Dattani R, Chen YC, et al. Ensilicated tetanus antigen retains immunogenicity: in vivo study and time-resolved SAXS characterization. Sci Rep. 2020;10:9243.
  • Aaw AA, Doekhie A, Sartbaeva A, et al. Ensilication improves the thermal stability of the tuberculosis antigen Ag85b and an Sbi-Ag85b vaccine conjugate. Sci Rep. 2019;9(1):11409.
  • Stinson JA, Palmer CR, Miller DP, et al. Thin silk fibroin films as a dried format for temperature stabilization of inactivated polio vaccine. Vaccine. 2020;38:1652–1660.
  • Kashiwagi S. Laser adjuvant for vaccination. FASEB J. 2020;34(3):3485–3500.
  • Markarian J. Accelerating technology adoption to track the cold chain. BioPharm Int. 2021;34(1):38–40.
  • Crommelin DJA, Anchordoquy TJ, Volkin DB, et al. Addressing the cold reality of mRNA vaccine stability. J Pharm Sci. 2021;110(3):997–1001.
  • Zhao P, Hou X, Yan J, et al. Long-term storage of lipid-like nanoparticles for mRNA delivery. Bioact Mater. 2020;5(2):358–363.
  • Ball RL, Bajaj P, Whitehead KA. Achieving long-term stability of lipid nanoparticles: examining the effect of pH, temperature, and lyophilization. Int J Nanomedicine. 2017;12:305–315.
  • Gerhardt A, Voigt E, Archer M, Reed S, Larson E, Van Hoeven N, Kramer R, Fox C, Casper C. A thermostable, flexible RNA vaccine delivery platform for pandemic response. bioRxiv. 2021.02.01.429283

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.